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Abstract— Spherical cameras are widely used for robot per-
ception because of their full 360 degree fields of view. However,
the robot body is always seen in the view, causing occlusions.
In this paper, we propose a video completion method which
is able to remove occlusions fast and recover the occluded
background accurately. We first estimate motion in a 2D dense
spherical optical flow field. Then we interpolate the motion
in the occlusion regions by solving least square minimization
problems using polynomial models. Based on the interpolated
motion, we recover the occluded regions by tracing the optical
flow trajectory to find the corresponding pixels in other frames
and warping them back to fill in the occlusions. We also provide
a simple, yet fast solution to effectively remove occlusions in
all regions of the image by utilizing the continuity of field of
view of spherical images. In experiments, quantitative methods
are conducted to demonstrate the effectiveness and efficiency
of our proposed method by comparing the results with those
from state-of-the-art methods.

I. INTRODUCTION

Spherical videos have a wide variety of applications in
robotics and entertainment, such as 3D environment recon-
struction [1] and virtual reality [2]. They can acquire the
whole scene from every direction in space simultaneously.
However, a common problem existing in these applications
is that anything attached to camera, such as robot body
or photographer body, always appears in view, causing
undesired regions. For example, when mounting a spherical
camera on a drone, as is shown in Fig. 1(a), the drone body
occludes some parts of field of view from the camera. This
causes severe occlusions and one example of such occluded
image frame can be seen in Fig. 1(b). In addition, in 3D
reconstruction applications [1], spherical cameras are fixed
on robot bodies and undesired robot platform occlusions
have to be ignored by manually putting a mask to avoid
mismatching of point correspondences. In virtual reality
applications [2], the photographer’s head is always in the
center of videos, occluding users’ view and leaving blind
holes after being deleted. Furthermore, difference in motion
between occlusions (photographer’s head) and background
causes discontinuity for visualization. Therefore, removing
undesired occlusions to recover the true background infor-
mation, as shown in Fig. 1(c), is necessary and desired for
applications involving spherical cameras.

In this paper, a new method is proposed to complete
occlusions in panoramic video captured by a freely moving
camera. The proposed method is based on the assumptions
that background environment is static and information behind
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Ricoh theta

(a) An example of mounting a spherical camera,
Ricoh Theta, on the body of an AR.Drone 2.

(b) An original equirectangular image from the mounted Ricoh
Theta. Here, the drone body severely occludes the camera vision.

(c) A completed result, in which the drone body is removed, by
the proposed method.

Fig. 1. Example of removal of occlusions in spherical images by the
proposed method (from 6th video frame in our experiment).

occlusions is visible in at least one of other frames. The
procedure is summarized as follows. First, the occlusion
region is rotated to the center of the equirectangular image
frame to minimize image distortion. Then the 2D dense
spherical optical flow field is calculated from the rotated
panoramic image sequences. The optical flow field in and
near occlusions is removed to avoid the influence from occlu-
sions. In addition, the continuity of field of view of spherical
images is utilized here to effectively remove occlusions in
all regions of the image. Based on the estimated dense
optical flow field, two polynomial models are used to model



object motion and then the motion in occluded regions is
interpolated based on the models. Based on the interpolated
motion, corresponding pixels are found in other frames by
tracing along the optical flow trajectory to fill in occlusions.
Our main contributions in this paper is using the continuity
of spherical images in estimating and interpolating optical
flow robustly and warping image frames iteratively to find
corresponding pixels in further frames accurately.

The remainder of this paper is organized as follows.
Section II discusses the related work of video completion
on panoramic and normal videos. Section III explains the
spherical camera model and the motion estimation method
we propose. Section IV describes how we interpolate motion
and use that to inpaint occlusions. Section V shows the
quantitative experiments and compares our results with prior
methods, followed by the conclusion in the last section.

II. RELATED WORK

Some video completion methods have been proposed for
occluded regions in panoramic videos before. Kawai et al.
proposed methods to fill in missing regions by searching
for similar exemplars in projected image planes from other
frames [3] and by aligning multiple frames based on a
reconstructed 3D model [4]. However, the former can only
work under the assumption that occluded region is planar in
all image frames, which limits the applicability. The latter
severely relies on a previously reconstructed 3D model and
thus is not feasible without 3D reconstruction model. Paredes
et al. [5] rectify omnidirectional images to perspective ones
and then implement an image inpainting method [6] on
each frame separately, without using information from other
frames. Thus, such methods lose temporal coherence and
lead to wrong background recovery .

In addition to spherical videos, many video completion
methods have been proposed on perspective videos. They
can be categorized into two classes: ones searching for the
most similar exemplars in all video frames [7][8] and others
using motion information to find corresponding pixels in
other frames [9][10].

The former search-based methods [7][8] define the simi-
larity between exemplars, which are spatio-temporal cubes,
and then search for the most similar exemplars in all video
frames. The most similar exemplars are used to replace the
occluded ones. While these methods can generate plausible
results, the occluded background cannot always be found as
the most similar patch, even if it does appear in other frames.
In addition, such rigid cubes make it difficult to capture
appearance changes resulting from the distortion of spherical
images. As a result, these methods can lead to wrong output
and unavoidably take much processing time for searching.

On the other hand, the latter motion-based methods esti-
mate motion information in occlusion regions and find the
corresponding pixels of occlusions in other frames. Some
methods, like Yamashita et al. [9], estimate the camera
motion and then complete missing regions by searching
along the movement trajectories in neighboring frames.
However, these methods require a fixed camera center to
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Fig. 2. Spherical image in equirectangular projection. (a) Spherical
coordinates. (b) Equirectangular projection

find corresponding pixels in other frames properly and thus
cannot be applied to a freely moving camera. To deal with
occlusions in moving cameras, some other methods, like
You et al. [10] estimate motion in occluded regions by
interpolating optical flow and then find the correspondences
in other frames using interpolated optical flow. However,
these methods rely on a linear approximation of optical flow
in adjacent frames and thus are not suitable for the motion
pattern in spherical images. Moreover, at the borders of
images, the interpolation turns into an extrapolation situation
due to the luck of information beyond the borders. The
extrapolation may lead to falsely estimated motion, as will
be seen later in Fig. 7(b). In summary, it is difficult to
successfully remove occlusions in panoramic videos from
a freely moving camera. We solve the above problems by
considering the continuity of spherical images and image
warping instead of using linear approximations.

III. MOTION ESTIMATION

A. Properties of spherical images

Here we first formulate the problems caused by spherical
imaging. An image captured by a spherical camera is a
projection to a spherical image plane (Fig. 2(a)) and usu-
ally shown as an equirectangular form for 2D visualization
(Fig. 2(b)). Here we describe pixels on spherical image
plane in the spherical coordinate, (r, θ , φ), with unit radius
r, polar angle θ , and azimuthal angle φ . Since all pixels
move on an unit sphere, the expression in equirectangular
images can avoid defining 3D calculations in Cartesian
coordinates. Each point in spherical images can be expressed
on equirectangular images

θ =
2π

W
u, φ =

π

H
v, (1)

where W and H are the width and height of equirectangular
image, respectively, and u and v are the corresponding
2D Cartesian coordinates on the equirectangular images.
They have the relationship W = 2H. The evenly spaced
horizontal and vertical space in equirectangular image leads
to distortion. The distortion also varies according to the
v coordinate. Regions near the poles have more severe
distortion than regions near the equators. This distortion
phenomenon increases the difficulty in estimating the motion
near the poles.



(a) Motion pattern in normal images.

(b) Motion pattern on spherical images.

Fig. 3. Motion pattern difference for camera going straight forward in
normal images and spherical images.

In addition to the distortion on each single spherical image,
the motion pattern is also special in spherical image frames.
It has two properties. First, pixels on spherical images can
only move along the spherical surfaces. Such movements
are projected as curves on the equirectangular images. Take
a movement of camera going straight forward as an example.
In normal images, as is shown in Fig. 3(a), correspondences
(white vectors) are appearing as a linear trajectory from
the vanishing point of the translation direction (red circle).
On the contrary, in the equirectangular images, as is shown
in Fig. 3(b), correspondences (white vectors) move along
projected curves, from one vanishing point (blue circle)
of the translation direction to another (red circle). The
epipolar curves are visualized as red curves, along which
the point correspondences move. Furthermore, in normal
images where the field of view is limited, it is not possible to
estimate the motion of points near the image borders due to
the lack of information outside of the borders. On the other
hand, in spherical images where the field of view is full,
correspondences will not move out of the field of view and
thus can be found for points in all areas. Even if the points
near the equirectangular image borders, as can be seen in
Fig. 3(b), the correspondences can be found in the opposite
borders because of the continuity of spherical images.

B. Decreasing the occlusion distortion

Occlusions, in most cases, appear near the bottoms of
images. This is caused by the fact that the bottoms of cameras
are usually fixed to other things, for example, held by hand
or attached to robots. One example can be seen in Fig. 1(b),
where the bottom of the camera was plugged in to the drone
body. However, as we mentioned before, the bottom images
have more severe distortion. It is difficult to accurately
measure the motion there using existing algorithms which

Fig. 4. Decreased distortion on occlusion regions by image rotation

were designed for normal images.
To deal with this severe distortion problem, we first rotate

the image to bring the occlusions to the image center, where
distortion is similar to that of a perspective projection image.
The rotation is performed based on the spherical image and
then converted back to the equirectangular image based on
Eq. (1). The image after rotation is shown in Fig. 4, where
distortion in occluded region is decreased significantly by
compared with image being rotated before, in Fig. 1(b).

C. Spherical Optical Flow

Here we describe how we estimate motion on spherical
images using 2D optical flow fields. We use Vx to denote an
optical flow field in the direction of x. Although a spherical
image has three dimensions, it also has a constraint that
radius is constant and thus its motion can be expressed in 2D
spherical optical flow vectors, Vθ and Vφ . Considering the
image distortion, we first use SIFT flow [11] to obtain the
dense image correspondences Vu and Vv on equirectangular
images. SIFT flow is a dense optical flow method based on
SIFT features [12], invariant to scale, rotation and perspective
transformation and thus can find the correspondences even
in distorted images. Then we obtain Vθ , Vφ from Vu, Vv
using Eq. (2).

Vθ =
2π

W
Vu, Vφ =

π

H
Vv (2)

This way, instead of calculating optical flow vectors on
3D sphere images, we can obtain a quadratic computation
complexity in the two dimensions.

However, some problems may occur in the motion es-
timation process on equirectangular images. For example,
objects which move across the right and left borders of the
image appear on the corresponding opposite border due to
the 360 degree field of view. It shows an apparent large
displacement across the equirectangular image whereas the
true displacement on a spherical image is actually small.
Most existing optical flow algorithms cannot deal with such
phenomenon of large displacement because the objective
functions in most of them constrain the optical flow vectors
to be as small as possible, which is useful for perspective
images, but insufficient for capturing true movement in
equirectangular images.

To address this problem, we use a simple method using the
continuity of the spherical image. We extend the equirectan-
gular image on both sides by copying redundant, connected



Fig. 5. Image extension to address the problem of large displacement and
extrapolation

information from the corresponding opposite side to enhance
a natural continuity in the image. As shown in Fig. 5, we
can copy the u coordinate (−W

2 ,−
W
2 +4u) from the original

equirectangular image to the u coordinate (W
2 ,

W
2 +4u) in

the extended equirectangular image. Similarly, region in u
coordinate (W

2 −4u, W
2 ) from the original equirectangular

image can be copied to the u coordinate (−W
2 −4u,−W

2 )
in the extended equirectangular image. The parameter 4u
is chosen to be large enough to cover the possible displace-
ments. Now, on the extended image sequences, we apply the
SIFT Flow algorithm to get the optical flow fields Vu and
Vv. After all required computations, we remove the extended
regions and revert back to the original equirectangular image.

IV. MOTION INTERPOLATION

A. Polynomial modeling

Based on the spherical optical flow calculated on the whole
image, we interpolate the dense motion inside the occlu-
sion region using two 2D polynomial models. High order
polynomial models have been widely used in describing
omnidirectional image distortion [13] and are able to capture
the appearance change of objects caused by camera motion
and environment structure [10].

First, motion in the occluded regions needs to be removed
using the mask, which is given or detected in advance. How-
ever, measured motion vectors of regions near occlusions is
also impaired due to the smoothness constraints in optical
flow algorithms. Therefore, here we need to expand the mask
region by image dilution processing in order to cover the
entire influenced region. Next, we approximate the motion
of pixels in each image frames using two 2D polynomial
models, one for Vθ and one for Vφ . Motion fields in the
direction θ and φ are modeled separately based on their
spherical coordinates, as is expressed in Eqs. (3) and (4).

Vθ (θ ,φ) = ∑
i+ j=0,1,...,m

ai jθ
i
φ

j (3)

Vφ (θ ,φ) = ∑
i+ j=0,1,...,m

bi jθ
i
φ

j (4)

where ai j and bi j are the polynomial model coefficients for
each image frame and m is the overall order of polynomial
model. All possible terms up to order m are considered in
this form and give rise to p coefficients here. The polynomial
model coefficients can be optimized by solving least-square
minimizations. Here, we find the polynomial coefficients ai j
and bi j by minimizing the error Eqs. (5) and (6) separately.

eθ = ∑
k=1,2,...,N

|vθ (θk,φk)− v̄θ (θk,φk)|2 (5)

eφ = ∑
k=1,2,...,N

|vφ (θk,φk)− v̄φ (θk,φk)|2 (6)

In these two equations, θk and φk represent the spherical
coordinates of unimpaired pixel k and there are N unimpaired
pixels on the image frame. vθ and vφ are the estimated
motion vectors of unimpaired pixels using the polynomial
models and v̄θ , v̄φ are the measured motion vectors of unim-
paired pixels using the optical flow algorithm. To solve for
polynomial coefficients, the Eq. (5) can be further rewritten
in the form of least square problems

c∗ = arg min
c
||Ac− v̄||2, (7)

where

A =


1 θ1 φ1 θ1φ1 θ 2

1 φ 2
1 . . . θ m

1 φ m
1

1 θ2 φ2 θ2φ2 θ 2
2 φ 2

2 . . . θ m
2 φ m

2
...

...
...

...
...

...
. . .

...
...

1 θN φN θNφN θ 2
N φ 2

N . . . θ m
N φ m

N

 ,
c =

[
a00 a10 a01 a11 a20 a02 · · · am0 a0m

]T
,

v̄ =
[
Vθ (θ1,φ1) Vθ (θ2,φ2) · · · Vθ (θN ,φN)

]T
.

Matrix A is the 2D polynomial expression in spherical coor-
dinates, c is coefficient vector and v̄ is the measured optical
flow in the θ direction. Here we use QR decomposition to
solve Eq. (7) for its fast computation and higher stability as
compared to calculating the pseudo-inverse. Briefly speaking,
after decomposing A into an orthogonal matrix Q and an
upper triangular matrix R, the coefficient matrix E, which
minimizes Eq. (5), can be obtained as R−1QTV. The coeffi-
cients bi j can also be solved in the same way. After obtaining
the polynomial coefficients ai j and bi j, we can estimate the
spherical optical flow in the occluded regions using Eqs. (3)
and (4) according to their spherical coordinates.

In the case of high resolution spherical image sequences,
the size of image is very big, which causes pixel number
N to be much bigger than coefficient number p. This
causes the matrix A as well as the decomposed matrix Q
and R to be very sparse and cost high computation time.
Therefore, before we solve the least square problem, we first
downsample the image matrix and the corresponding optical
flow matrix. Since the optical flow matrix is very dense and
smooth in most regions, the downsampling process will not
affect the accuracy of solution but could hasten the solution.
In addition, here we choose an unweighted least square
minimization on each single image frame to interpolate the



(a) Input image frame with arti-
ficial drone-shape occlusion. Red
region is cut manually.

(b) Visualization of flow field.

(c) Ground truth motion estimated
by SIFT flow [11].

(d) Impaired motion on this image
frame due to occlusions.

(e) Interpolated motion by the pro-
posed method without downsam-
pling.

(f) Interpolated motion by the pro-
posed method with downsampling.

Fig. 6. Motion interpolation on an example frame. As can be seen, it is
not affected by downsampling.

motion to ensure the spatial coherence within two frames.
Because the assumption of linear approximation for motion
trajectory does not hold in spherical images, we do not
choose a temporally weighted least square minimization [10],
which calculates average speed in multiple frames to enforce
temporal coherence. Instead, the temporal coherence is en-
forced by image warping later when doing video completion.

Figure 6 gives an example of doing motion interpolation
on an input image frame, Fig. 6(a). In this paper we follow
the paper [14] to visualize the motion flow field in color, in
which the hue and saturation are transformed from the orien-
tation and magnitude of motion, respectively, as is shown in
Fig. 6(b). The ground truth motion on this input image frame
without red occlusions can be estimated by SIFT flow [11]
and is shown in Fig. 6(c). If we manually cut a drone-shape
occlusion, which is shown in red in Fig. 6(a), the motion
then is impaired and unknown in occlusion regions, as can
be seen in Fig. 6(d). In Fig. 6(e) and Fig. 6(f), the motions in
occluded regions are both interpolated successfully, with or
without performing downsampling to fasten the interpolation,
and show no differences. Hence, we can increase the speed
without sacrificing performance.

B. Solution to extrapolation problem near image borders

As is mentioned before, normal images suffer from es-
timating motion near borders due to lack of information
outside of image. This is caused by the limited field of view
in normal cameras. It will also cause the failure of accurately
interpolating motion near image borders. To illustrate this
issue, we use Fig. 7 as an example, where the image frame
was under almost a purely yaw rotation. The ground truth

(a) Input image. Green regions
mark occlusions and one appears at
the right border.

(b) Direct interpolation causes ex-
trapolation near upper right corner,
producing incorrect motion.

(c) Our interpolation result after
performing image extension.

(d) Ground truth of optical flow on
this frame.

Fig. 7. Extrapolation problem for occlusions near borders

motion between Fig. 7(a) and its next frame is shown in
Fig. 7(d). However, if we cut some regions (marked as green)
in Fig. 7(a), and directly interpolate the motion inside these
regions using the algorithm above, motion interpolation near
borders, such as the black rectangular region, fails as is
shown in Fig. 7(b). The reason for failure is that the lack
of information outside of the border causes interpolation to
extrapolation and leads to false motion interpolated.

To deal with this information, we again utilize the con-
tinuity of spherical images. Different from normal images,
spherical images are continuous and the information actually
exists on the opposite border. Before doing polynomial
interpolation, we first extend the equirectangular image to
ensure there is enough information outside of border, as is
done in Fig. 5. Besides, for the top and bottom border of
equirectangular images they are projected from two single
pixels, top and bottom one, in the spherical image. Therefore,
optical flow field can be set as approximately zero value
at these places. After image extension, we can do motion
interpolation on the extended image and the result can be
seen in Fig. 7(c). The result shows the extrapolation problem
is solved properly and the motion can be interpolated well
near borders.

V. VIDEO COMPLETION USING IMAGE WARPING

Based on the motion that we estimate by polynomial
interpolation, we complete the occlusion region by image
warping. Image warping is an image transformation process
using a vector field V: R2→ R2 that translates each points
in one image to another one. In this case, the vector field
consists of the interpolated spherical optical flow vectors
and points are spherical coordinates of pixels on image
frames. For a particular pixel (θs,φs) in the source image,
the corresponding coordinates (θw,φw) of the warped pixel
on the next frame can be calculated as

(θs,φs)← (θs +Vθ (θs,φs),φs +Vφ (θs,φs)). (8)

To find corresponding pixels in the further frames, we use the
chain of optical flow by iteratively warping the source image



Fig. 8. Experimental setting to record ground truth image frames. A
spherical camera, Ricoh Theta, is hung using a thin string to take ground
truth image sequences.

further, instead of directly multiplying the frame difference,
since the linear approximation assumption does not hold in
panoramic image sequences. For any given image frame i,
it can be warped to another image frame j, frame by frame
from i, i+ 1, ..., to j, according to the motion of each two
consecutive frames between frame i and frame j. Based on
the motion, we can find the correspondences in other image
frames. When pixels move out of the left or right borders,
we find their warped position near the opposite border based
on the continuity of the spherical image.

To utilize the information in temporally far frames, we
iteratively alternate the warping sequence in the forward
and reverse direction to scatter information instead of one
single direction. In addition, to trace the occluded region and
prevent holes from appearing in the warped images due to
interpolation in pixel coordinates, we warp the source image
and mask together to the target frame. Useful information
for completing the target image is that which appears in the
target mask yet outside of source mask. Since the motion
between the target image and the closer source image is more
accurate and more coherent, we choose the corresponding
pixels in the temporally closest frame’s unoccluded regions
and use those pixels to complete the occlusions in the
source image by copying. For large occlusions, in which the
correspondences cannot be found, we choose to believe in
the completed regions and propagate the inpainting, which
are then used to complete the remaining occlusions.

VI. EXPERIMENTS

We conducted quantitative experiments to measure the
accuracy and efficiency of our proposed video completion
algorithm. The motivation of our approach is to complete
the occlusions using real background regions in limited time.
Therefore, it is important to check the execution time and
whether our approach is able to recover the occluded infor-
mation, instead of just filling in some plausible information.
We use the root mean squared error (RMSE) metric to
calculate the error on the 8 bit (R; G; B) values between the
ground truth and the completed video frames. The RMSE
value is calculated on each frame and the average RMSE
value of the whole image sequences is also calculated.

To have ground truth image frames to compare with, we
need to take image frames, in which there are no occlusions
existing. As is shown in Fig. 8, we used a thin string to hang
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Fig. 9. Comparison of RMSE on all video frames. The proposed method
shows the best accuracy in almost all image frames, compared to other three
methods.

a spherical camera, Ricoh theta, to capture image sequences.
This captured videos with almost zero occlusions and thus
were used as the ground truth. To simulate motion of a drone
with a spherical camera, we put a drone-shaped mask on the
video and manually delete the mask region, which made the
video severely occluded. We also took real videos captured
by a Ricoh Theta on the a moving AR Parrot Drone 2.0 to test
the applicability of our algorithm. The input data is in 960
× 480 resolution. Our method runs on a laptop with an 8GB
memory with an Intel i7 CPU. On the same hardware and
conditions, we compared our method with Criminisi et al.’s
image inpainting method [6], Newson et al.’s search-based
video completion method [8], and You et al.’s motion-based
method [10]. Other methods [3], [4], [9] require a multiple-
camera system, a pre-reconstructed environment model or a
pan-tilt camera and thus were not considered for comparison.
All programs were run in a MATLAB environment.

As shown in Table I, all four methods take relatively long
time to process each frame due to the large occlusions, but
our proposed method is significantly faster than all other
methods since we do not involve any similarity searching
methods. Besides, the proposed method also shows better
results in recovering true background information. The com-
parison of four methods on each frame can be seen in Fig.
9. The results show that our method outperforms others
on almost all frames. Fig. 10 shows a comparison on the
50th frame. To help see the difference better, we rotated
the occlusion to the center of image. As the outputs and
the RMSE values show, our method can efficiently recover
background information by tracing the optical flow trajectory
to find the corresponding information, even across the image
borders. In comparison, the search-based method [8] gives
a smooth output, in which most occlusions are replaced by
textureless regions. These textureless regions were chosen as
the most similar patches with the surrounding information.
This makes the outputs look visually nice, but does not fit our
purpose of recovering true background information. Image
inpainting method [6], as well as the previous motion-based
method [10], which calls method [6] when correspondences
in neighboring frames cannot be found, fails to recover the
true information since they only utilize the information on
the same frame itself.



TABLE I
AVERAGE RGB RMSE AND COMPUTATION TIME COMPARISON PER FRAME

Proposed Image inpainting [6] Searching-based [8] Motion-based [10]
Average RMSE 13.8719 33.8339 17.7644 24.0618
Time (Seconds) 126 890 261 172

Output (50th frame) Corresponding RMSE (50th frame)
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Fig. 10. Quantitative evaluation of video completion



VII. CONCLUSIONS

In this paper, we proposed a novel method to remove
undesired occlusions using estimated motion in panoramic
video. We newly combine polynomial fitting with spherical
continuity to interpolate motion and complete occlusions
along the estimated optical flow trajectories. No constraints
of camera motion are included in our approach. Experimental
results demonstrate the accuracy and efficiency of our pro-
posed approach. In future work, more accurate optical flow
estimation method will be considered. Besides, our current
motion interpolation method gives a smooth output, in which
motion of edges is not considered yet. Our future work is also
to include an edge-aware interpolation into our completion
method.
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