
Recovery Motion Learning for Arm
Mounted Mobile Crawler Robot

in Drive System’s Failure ⋆

Tasuku ITO ∗ Hitoshi KONO ∗ Yusuke TAMURA ∗

Atsushi YAMASHITA ∗ Hajime ASAMA ∗

∗ Department of Precision Engineering, Graduate School of
Engineering, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan (e-mail:
{ito,kono,tamura,yamashita,asama}@robot.t.u-tokyo.ac.jp)

Abstract: In the disaster area, an arm mounted crawler robot is leveraged for missions such
as searching victims. However, the robot system has possibility of failure of drive system at
the extreme environment. Moreover, the robot needs to keep moving to repair the mechanism,
if the drive system becomes failure. In response to this problem, it is important to realize the
recovery motion. However, designing of recovery motion is difficult because the recovery motion
depends on the environments and configurations of the robot. This paper describes the learning
methodology of the recovery motion in the single-arm mounted crawler robot, and we confirmed
that the proposed system can learn the recovery motion in computer simulation.

Keywords: Reinforcement learning, Fault tolerance, Crawler robot, Teleoperation, Motion
control, Intelligent driver aids, Normalized energy stability margin

1. INTRODUCTION

A variety of mobile robots have been developed in the
recent years and they have been achieving a large num-
ber of accomplishments at disaster sites (Murphy [2004],
Matsuno and Tadokoro [2004]). As a matter of fact, a
large number of arm mounted mobile crawler robots were
implemented to disaster sites arising from the Great East
Japan Earthquake that occurred in 2011. It should be
noted that a feature of such robots is that they have an
arm mounted for removing debris at disaster sites, as cited
by referenced paper (Strickland [2014]).

Environments where these robots are implemented aredan-
gerous areas and preparations for unforeseen accidents
must be in place. This research therefore considered sit-
uations where a failure occurs with such implemented
robots. In instances where a robot malfunctions, it must
be returned to a location where it does not get in the
way of other robots with their work operations and where
it can be repaired. While a robot can continue to move
if a component other than the crawlers fail, it would be
difficult for a robot to move with a failed crawler. The
utilization of remaining functions (such as that of the arm)
can be considered as a useful ways of mobility for a robot
in a crawler system failure. Such a way is called as the
recovery motion in this paper.

Failures of a crawler may be due to a variety of reasons,
including a failure of a wheel, motor or damages sustained
by one side of crawler. The environment in which such

⋆ This work was in part funded by ImPACT Program of Council for
Science, Technology and Innovation (Cabinet Office, Government of
Japan).

robots operate, furthermore, include such environments as
inclines or uneven road surfaces. It is therefore difficult to
design a recovery motion that can be applied to all such
situations. There are also a variety of types of robots and
it is important to take into consideration the application
of recovery motions to many robots, such as the ASTACO-
SoRa with multiple arms (Strickland [2014]). Although it
would be important to create redundant and predicted
motions that respond to all elements described above for
the future. However, it would be difficult to design all
conceivable motions. It would therefore be more effective
for the system to learn recovery motions in advance
through the 3D simulator, rather than having humans
design such motions.

The study on the method for the acquisition of recovery
motion in cases of failures using reinforcement learning
for a multiple legged robot as well as the study on the
acquisition of walking motion by a multiped robot using
the central pattern generator (CPG) can be cited as rel-
evant studies (Kober and Peters [2012]). The acquisition
of motion (Ito et al. [2003]) by a multiped robot using
a reinforcement learning, furthermore, involved a method
that combined the use of a genetic algorithm and motion
acquisition continues when a failure occurs. It is evident
from the literatures described above that the reinforce-
ment learning is useful for the acquisition of motions
of robots. There were cases that considered tumbling of
robots. It is essential that the stability of robots while
recovery motion should be taken into consideration when
dealing with recovery motions of crawler robots. Stability
will therefore be taken into consideration, along with the
use of means other than the crawlers, such as the arm, for
utilization in the movement of a robot.

Fig. 1. Single-armed crawler robot

Fig. 2. Q-learning flow

The crawler robot of this research acquired recovery mo-
tion for robot in crawler system failure through a reinforce-
ment learning. A method for recovery motion of a single
armed crawler robot that is equipped with two crawlers
and a single arm (Fig. 1), involving a straight movement
by the robot on a flat ground, is proposed as a basic
consideration of this research.

2. PROPOSED METHOD

2.1 Assumptions

This paper describes a crawler-type robot that is mounted
with a single arm, as described in Fig. 1. Let us assume a
situation where the robot is unable to move due to a failure
with one of the crawlers. The remaining mechanisms that
control the robot consists of four components, namely the
crawler, swing, boom and arm (Fig. 1).

2.2 Reinforced learning

Reinforced learning is a framework of learning optimized
actions acquired by a robot, through a repetition of trial
and error (Sutton and Gbarto [1998]). When the robot
takes an action stochastically and if such an action turns
out to be an action that is the intended purpose of the
action, a scalar quantity referred to as the reward is gained.
The robot gradually learns to take actions that maximize
the reward by repetation of taking actions. In other words,
a robot can be made to learn actions that are suitable for
the environment by providing rewards according to the

targeted objectives of the robots through reinforcement
learning. The Q-learning algorithm, which is used for
many researches in reinforcement learning process and the
selecting of actions by Boltzmann distribution, that makes
it easier for a robot to make selections with greater rewards
as the number of learning sessions increases, were used for
the purpose of this research. The Q-learning is described
below.

2.3 Q-learning

Q-learning is a reinforcement learning method that in-
volves repeated selection of actions and updating of value
functions during a single episode which is the term from
the first state to the terminal state (Fig. 2). The updating
of the action value function Q(st, at) is performed using
the temporal difference (TD) error δ as shown by (1), as
shown by (2). Q(st, at) is a function that expresses the
value when action at is taken at state st, while rt is the
reward from taking such an action. maxa Q(st+1, a) is the
maximum action value function Q at state st+1. The span
from the selection of the action to the updating of the value
function is referred to as one step and this is repeated until
an episode is completed. The process moves onto the next
episode when an episode has been completed.

δ = rt + γmax
a

Q(st+1, a)−Q(st, at) (1)

Q(st, at)← Q(st, at) + αδ (2)

where α is the learning rate and γ is the discount rate.

2.4 Boltzman distribution

The selecting of actions by Boltzmann distribution is a
selection method for actions specified by (3) shown below,
which indicates the probability π(s, a) of action a being
taken at state s (s ∈ S, a ∈ A).

π(s, a) =
exp(Q(s,a)

T)∑
b∈A exp(Q(s,b)

T)
(3)

When the temperature coefficient T is extremely large, the
contribution of the action value function Q becomes small
and all actions approach equivalent probability. When
T is small, on the other hand, the contribution of Q
becomes greater and the action probability becomes more
susceptible to the influence from the magnitude of Q. The
following stipulation was defined for T in this instance,
using a function that approaches 0 with the progression of
an episode.

T =
1

log(t+ 0.1)
(4)

where t is the number of episodes.

2.5 Rewards functions

The rewards design is one of the most important designs
for reinforcement learning. A large amount of time is
considered to be required for the convergence of learning,
since the environment is spacious and there is a large
degree of freedom for the robot. Typically, in reinforcement
learning the robot can obtain the reward when it arrive at
the target or achieve some task. The straight movement
of the robot involves the use of relocation vectors as
well as the arrival at the targeted destination as rewards.

The potential tumbling of the robot was also taken into
consideration for the purpose of this research, as described
earlier. The reward for the stability margin of the robot
was designed in addition to both the relocation vectors
and the goal to promote learning, as described below.
Respective rewards are described below.

Relocation vectors The angle θ (−π ≤ θ ≤ π), formed
by the unit vector e in the direction in which the robot is
facing and the vector p that indicates actual progression,
is defined as shown in Fig. 3. The projection of p with
respect to e shall be d1, where the direction of vector e
shall be in the positive direction. d2 shall also be defined,
based on the following equation.

p =

[
xt+1 − xt

yt+1 − yt

]
(5)

d1 = |p| cos θt (6)

d2 = |p| sin θt (7)

The reward r
(1)
t is given for each single step taken, based

on such values and according to the equation described
below.

r
(1)
t = ηd1 − λ|d2| − τ |ϕ| (8)

where η and λ shall respectively be positive coefficients.
The relocation vector in the straightmovement direction is
evaluated based on the first term on the right side, while
the second term is used to evaluate the drifting of the
motion from the direction of the straight movement. The
third term, furthermore, is used to evaluate the drifting of
the orientation of the robot.

Goal A goal and a goal line was specified ahead of
the robot at the distance b meters (Fig. 4). The segment
leading to the arrival of the robot at the goal line is
considered a single episode and the robot is given a
reward upon reaching the goal line, based on the following
equation. d3 is the distance between the robot and the goal
at the time the robot reaches the goal line.

r
(2)
t =

{
ζ exp(−|d3|) if robot reached goal line

0 otherwise
(9)

Here ζ , furthermore, is a positive coefficient. The frame-
work was set in such a way that the amount of reward
decreases as the robot veers away from the direction of the
straight movement. The integrated movements using an
arm, conducted until the robot reached the goal, could be
evaluated by setting details described above. The segment
leading to the arrival of the robot at the goal line was
considered a single episode. As soon as the robot reached
the goal line, another goal line was set up ahead of the
robot at the point where it has reached the current goal
line, at distance b meters away. The next episode started
then.

2.6 Stability evaluation

There is a potential for the robot to tumble. An evaluation
on the tumbling stability of the robot was incorporated
into the reward function for this reason. The normalized

𝜃𝑡
𝒑

𝒆

𝑑1

𝑑2

𝜙𝑡

Robot

𝑦𝑤

𝑥𝑤

Top view

O 𝑥𝑡+1 𝑥𝑡

𝑦𝑡+1

𝑦𝑡

(𝑥𝑡, 𝑦𝑡)

(𝑥𝑡+1, 𝑦𝑡+1)

Fig. 3. Vector reward

𝑏

Goal Line

𝑑3

Robot

Goal distance

𝑦𝑤

𝑥𝑤

Top view

𝑡 = 0

𝑡 = 𝑇

(𝑥0, 𝑦0)

(𝑥𝑇 , 𝑦𝑇)

(𝑥𝑔, 𝑦𝑔)

Fig. 4. Goal reward

Contact point

𝐺

𝑍1

Rolled over

𝑆1

𝐴1
𝐴2

𝐴3

Fig. 5. Normalized energy stability margin

energy stability margin (NE stability margin) (Messuri
and Klein [1985]) (Hirose et al. [2001]) was used for
the purpose of stability evaluation. This is an evaluation
method that should be used on the walking machines but
the front and rear sections of the crawler portions were
respectively assumed as support legs in this research. The
height of the center of gravity of the robot was set to zg
and the maximum point of the center of gravity at the time
the robot tumbles around A1A2 was set to Z1 (Fig. 5).
After the calculation of the height of each tumbles around
A2A3, A3A1, Si is given by following equation.

Fig. 6. RBF network

Table 1. State st, Action at

Joint Fig. 1 State st Action at
Right crawler 1 Torque (N・m) 0.3, 0, -0.3 m/s

Swing 2 Joint angle (rad) 0.3, 0, -0.3 rad/s

Boom 3 Joint angle (rad) 0.3, 0, -0.3 rad/s

Arm 4 Joint angle (rad) 0.3, 0, -0.3 rad/s

Si = Zi − zg (10)

The stability margin SNE is given by the following equa-
tion.

SNE = min
i

Si (11)

The stability is greater as SNE is greater. The reward was
set as a negative reward since this was handled by the
reward function.

r
(3)
t = −ρ exp(−SNE) (12)

A reward of the NE stability margin was given for each step
taken. A significant additional negative reward was given
when the robot tumbled, after which it was returned to
the initial position and then the episode moved onto the
next episode.

2.7 Function approximation of the policy

There are instances where an explosion of state space
occurs with learning, where the state action space increases
exponentially from state space. The radial basis function
(RBF) network (Platt [1991]) (Fig. 6) was therefore used
to approximate the action value function Q. The state
value and action value were given as input values and the
equation for the output layers is shown below.

y =
∑
j

wjϕj(x) (13)

The RBF network is a simple three-layer neural network,
using the Gaussian function of the RBF expressed by the
following equation as activation function.

ϕj(x) = exp

[
−
∑
i

(xi − µij)
2

σ2
j

]
(14)

where µij and σj respectively represent center position and
standard deviation of the j center layer unit.

Table 2. Experiment setup parameter

Parameter Value

Learning rate α 0.1
Discount rate γ 0.9
Vector reward η 8.0
Vector reward λ 2.0
Vector reward τ 10.0
Goal reward ζ 10.0
Goal distance b 2.0
Rolled over ρ 1.0

RBF update rate αw 0.1
RBF update rate ασ 0.01
RBF update rate αµ 0.1

The updating of the parameters of the RBF network is
described next. The value of the output value y = Q(st, at)
after an update is considered ŷ and the square error E was
defined as expressed by (15).

E =
1

2
(ŷ − y)2 (15)

The weights of wj and µij were updated for each updating
of the Q value using the following updating equation, in
order to minimize the error of output of the RBF network.

αw and αµ were updating rates.

wj ← wj − αw
∂E

∂wj
(16)

σj ← σj − ασ
∂E

∂σj
(17)

µij ← µij − αµ
∂E

∂µij
(18)

These updating equations are expressed in the following
manner, using the TD error δ used for updating.

wj ← wj + αwα
2δϕj(x) (19)

σj ← σj + ασα
2δwj

||xi − µij ||2

σ3
j

ϕj(x) (20)

µij ← µij + αµα
2δwj

xi − µij

σ2
j

ϕj(x) (21)

3. COMPUTER SIMULATION

3.1 Simulator

The integrated GUI software for robots, the Choreonoid
(Nakaoka [2012]), was used as the dynamics simulator.
The Choreonoid is equipped with a 3D dynamic simula-
tion engine. The operating environment of the computer
simulator was Ubuntu 14.04 LTS and Intel Core i7-4720
HQ, 2.6 GHz.

3.2 Experiment conditions

The robot was 1.6 meters long, 1.25 meters wide and 1.36
meters high, excluding the arm. The inputs of the status
and actions for this instance were specified as described in
Table 1. A total of eight values for state s and action a
with relation to the four types of control targets, as well as
the two values of roll and pitch of the robot for the given

-1

-0.5

0

0.5

1

1.5

2

-1.5 -1 -0.5 0 0.5 1 1.5

Episode 1

Episode 2500

572 actions

15 actions

Goal line

Start position

Fig. 7. Robot’s trajectory

-700

-600

-500

-400

-300

-200

-100

0

100

0 500 1000 1500 2000 2500 3000

T
o
ta

l
re

w
ar

d
s

Episodes

Fig. 8. Total reward

(a) 2.0 s (b) 7.0 s

(c) 12.0 s (d) 15.8 s

Fig. 9. Recovery motion of straight movement

state s were combined for a total of 10 values, which were
normalized and then entered as input values to output the
Q value through the function approximation. The output
torque speed was achieved with respect to the action value
a by PID control, as shown in the table. The 50 basis
functions ϕ were set for the RBF. The settings for the

parameters of the reinforcement learning, as well as the
parameters of the RBF are shown in Table 2. The reward
for tumbling was set to -10. A single episode was defined
as a straight movement by 2.0 meters. The initial values
were given randomly in the range of 0 to 1 for µij and 1.0

for σj . The number of trial episodes was set to 2500 and
the experiment was conducted using a simulator.

3.3 Experimental results

The trajetory of relocations by the robot during episode
1 and episode 2500 are shown in Fig. 7 as experiment
results. The initial position of the robot was (x, y) =
(0, 0) according to the world coordinate system, facing the
direction of the vector (0, 1). The goal line is a straight line
at y = 2.0. A comparison of the two trajectories reveal that
the movements of the robot became near linear movement.
Furthermore, there were little wasteful movements that
were observed at the initial stage of the episode. The scene
of convergence for the total reward value of the episode
is shown in Fig. 8. It is evident that the total amount of
reward has increased as the time progressed. The observed
movements of the robot are shown in Fig. 9. The arm was
rotated to the side of the failed crawler on the left side. The
arm was thrust on the ground as if to lift the left crawler
while the right crawler moved for the robot to advance
straight ahead. The relocation trajectory depicted in Fig. 7
shows that the robot still needs the learning to improve the
performance with regards to the relocation trajectory. It
is evident that movements in linear directions is possible
and the usefulness of the proposed method was confirmed.

4. CONCLUSION

The generation of a recovery motion involving a straight
movement was set as the target with the assumption of a
single crawler failure for a robot mounted with an arm. The
dynamic simulator and the reinforcement learning were
used to acquire the required motion. Rewards were set
for relocation vectors, goals and robot stability to propose
a rewards design method that would promote learning,
which was evaluated through a computer experiment. The
experiment results indicated that the linear relocation
motion could be acquired when a crawler failed through
a reinforcement learning by using the rewards design set
for this research.

Future works include tuning of parameters relating to
learning algorithm. Furthermore, evaluations under com-
plex environment using multiple actuators would be nec-
essary to verify the usefulness of the proposed method
and evaluations using actual equipment would also be
necessary.

REFERENCES

Hirose, S., Tsukagoshi, H., and Yoneda, K. (2001). Nor-
malized energy stability margin and its contour of walk-
ing vehicles on rough terrain. In Robotics and Automa-
tion, 2001. Proceedings 2001 ICRA. IEEE International
Conference on, volume 1, 181–186. IEEE.

Ito, K., Kamegawa, T., and Matsuno, F. (2003). Ex-
tended qdsega for controlling real robots-acquisition of
locomotion patterns for snake-like robot. In Robotics
and Automation, 2003. Proceedings. ICRA’03. IEEE
International Conference on, volume 1, 791–796. IEEE.

Kober, J. and Peters, J. (2012). Reinforcement learning in
robotics: A survey. In Reinforcement Learning, 579–610.
Springer.

Matsuno, F. and Tadokoro, S. (2004). Rescue robots and
systems in japan. In Robotics and Biomimetics, 2004.
ROBIO 2004. IEEE International Conference on, 12–
20. IEEE.

Messuri, D. and Klein, C. (1985). Automatic body regula-
tion for maintaining stability of a legged vehicle during
rough-terrain locomotion. IEEE Journal on Robotics
and Automation, 1(3), 132–141.

Murphy, R.R. (2004). Trial by fire [rescue robots]. IEEE
Robotics & Automation Magazine, 11(3), 50–61.

Nakaoka, S. (2012). Choreonoid: Extensible virtual robot
environment built on an integrated gui framework. In
System Integration (SII), 2012 IEEE/SICE Interna-
tional Symposium on, 79–85. IEEE.

Platt, J. (1991). A resource-allocating network for function
interpolation. Neural computation, 3(2), 213–225.

Strickland, E. (2014). Fukushima’s next 40 years. IEEE
Spectrum, 51(3), 46–53.

Sutton, R. and Gbarto, A. (eds.) (1998). Reinforcement
Learning. MIT Press.

