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Abstract: This paper presents a sensing method to measure three-dimensional (3-D) informa-
tion in an underwater environment using an acoustic camera. Acoustic cameras can acquire clear
information even in turbid water which is difficult to photograph with an optical camera. In
addition, its detection range is extensive. Compared to traditional sensors, acoustic cameras with
no restrictions on vision are the most powerful sensors for acquiring underwater information.
In this paper, we propose a novel approach which enables 3-D measurement of underwater
objects using arbitrary viewpoints based on an extended Kalman filter (EKF). By using the
probabilistic method based on the EKF, 3-D reconstruction of underwater objects is possible
even if the control input for camera movement has uncertainty. Furthermore, since the EKF
based estimation is performed sequentially each time, our methodology can be adapted to real-
time applications. Simulation and experimental results show the effectiveness of the proposed
method.

Keywords: 3-D measurement, underwater sensing, acoustic camera, pose estimation, extended
Kalman filter.

1. INTRODUCTION

In recent years, the need of underwater sensing techniques
has been increasing. There are numerous tasks in the
underwater environment such as inspection, investigation,
exploration, etc. (Yoerger et al. (2000)), (Huang et al.
(2011)). Until now, many underwater sensing activities
still rely on manpower like divers to be carried out. How-
ever, in some cases, humans conducting these works di-
rectly in underwater environment face many potential dan-
gers. For the dangerous tasks, instead of involving humans
directly, exploration by an unmanned robot is desired. Es-
pecially, in accidents of nuclear applications, it is necessary
to investigate inside in advance for decommissioning tasks.
For example, in March 2011, a magnitude 9.0 undersea
earthquake occurred off the Pacific coast of Tohoku in
east Japan which caused a huge tsunami that destroyed
the cooling system of Fukushima Daiichi nuclear power
station. This incident has resulted in increased radiation
levels inside and outside the plant which brought many
problems that need to be solved urgently. However, most
of the tasks were very dangerous for humans to carry out.
For such cases, robots such as autonomous underwater ve-
hicles (AUVs) and remotely operated underwater vehicles
(ROVs) are desired to be applied.

Typically, optical cameras are utilized to obtain informa-
tion in underwater environments. Since optical cameras
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Fig. 1. Observation of an object in a multi-view with an
acoustic camera.

have the advantage of obtaining high resolution images,
they were used in numerous researches to perform un-
derwater simultaneous localization and mapping (SLAM)
(Eustice et al. (2005)), (Eustice et al. (2006)), underwater
investigation (Zhang et al. (2011)), and 3-D reconstruction
of underwater objects (Pizarro et al. (2004)). However,
optical cameras are only suitable for clear water envi-
ronments and can only be used in very limited areas
where light reaches. Under turbid water or light lacking
environments, optical cameras cannot be used in general.



On the other hand, ultrasonic sensors can obtain reliable
information even in dark or turbid water; thus, they are
the most appropriate sensor for underwater sensing. In
this respect, measurements for seabed mineral resources,
fisheries resources, and seabed topography using ultrasonic
sensors have been investigated. More recently, the devel-
opment of acoustic cameras: dual-frequency identification
sonar (DIDSON) and adaptive resolution imaging sonar
(ARIS), called next-generation ultrasonic sensor, has en-
abled the information acquisition in aquatic environments
to become more effective (Belcher et al. (2002)). Thanks
to the high-resolution acoustic images of acoustic cameras,
a number of methodologies using acoustic camera-based
systems have been proposed for sensing the underwater
environment, such as mosaicing (Hurtos et al. (2014)),
underwater object detections (Cho et al. (2015)), and
location estimation of AUVs (Johannsson et al. (2010)).

Furthermore, other researches have proposed methods for
system calibration and 3-D scene construction by applying
opti-acoustic fusion system (Negahdaripour et al. (2009)),
(Babaee and Negahdaripour (2013)). These studies have
improved the accuracy of the 3-D measurement of un-
derwater objects by applying opti-acoustic stereo imaging
system calibration which is composed of one sonar and one
optical camera. However, this system still relies on optical
vision, which will reduce its range in turbid water. Other
than that, 3-D measurement techniques for underwater
objects using the acoustic camera images on a multi-
view have also been proposed by Aykin et al. (Aykin
and Negahdaripour (2015)), Kwak et al. (Kwak et al.
(2016)), and Ji et al.(Ji et al. (2016)). All of these studies
strictly assumed that the exact pose (i.e., position and
orientation) of the acoustic camera in multi-views is known
before carrying out the 3-D measurement of underwater
objects. However, especially in underwater environments,
it is difficult to accurately grasp the pose information of
the acoustic camera, so it is inevitable that errors occur in
the movement control information of the acoustic camera.
As a result, the accuracy of 3-D measurement deteriorates.
Therefore, in order to perform a more accurate 3-D mea-
surement, it is necessary to consider the pose errors for the
movement of the acoustic camera. A novel algorithm for
recovery of 3-D feature points using acoustic images from
multi-view while also constraining the poses from which
the images are taken has been proposed by Huang et al.
(Huang and Kaess (2015)). They recovered 3-D feature
points based on an optimization approach for the Bayesian
SLAM. However, the method used in this research required
to collect all of the data of measurement and movement
of the camera before performing the optimization. Thus,
it cannot be used in real-time applications, which are
necessary for the case of unmanned exploration tasks.

The contributions of this paper are as follows. Previous
approaches in which the pose error of each viewpoint could
not be considered have a significant limitation on the 3-D
measurement accuracy, as mentioned above. Moreover, we
should implement not the offline algorithm but the online
algorithm for the real-time application. Therefore, the
proposed 3-D measurement scheme in this paper is able to
manage the pose errors of the acoustic camera as well as
the online process. Figure 1 illustrates a conceptual image
of the proposed method based on multiple acoustic views.
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Fig. 2. Geometrical model in the acoustic camera image
generation.
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Fig. 3. Imaging sonar geometry. The values of the range r
and azimuth angle θ can be obtained from the pixel
coordinate of acoustic image, while the elevation angle
φ is missing.

In order to measure the 3-D position of the feature points
of the underwater object while estimating the accurate
poses of the acoustic camera, we use an extended Kalman
filter (EKF)-based approach. The estimation of the 3-D
position of the feature points and the latest pose of the
camera is sequentially performed at each time. Thus, our
novel method can be used in real-time applications.

2. PRELIMINARIES OF ACOUSTIC CAMERA

2.1 Acoustic projection model

An acoustic camera generates an acoustic image by trans-
mitting ultrasonic waves in a 3-D area space. Its sensing
range is determined by the maximum measuring range
rcam, minimum measuring range rmin, azimuth angle θcam,
and elevation angle φcam, as shown in Fig. 2. The ultra-
sonic waves propagate forward, hit the underwater object
and are reflected. The acoustic camera receives reflected
waves from the object, then calculates the power of the
reflected waves, and reports it at the pixel corresponding
to the direction of the reflected waves on a power map.

2.2 Imaging acoustic geometry

Although an acoustic camera senses a 3-D area, the
output of the sensing process is a 2-D acoustic image. As
shown in Fig. 3, the acoustic image provides the range
r and the azimuth angle θ, while the elevation angle φ
is missing. Therefore, it is generally impossible to take
the 3-D information of objects by using a single acoustic
image. To solve this problem, a theoretical methodology
to recover 3-D coordinates by using multi-acoustic images
from different viewpoints is proposed and will be discussed
in the next section.



3. EKF-BASED 3-D MEASUREMENT
METHODOLOGY

3.1 Problem setting

An overview of the proposed method in this study is
shown in Fig. 4. For the input information, sequential
images from the acoustic camera and control input data for
camera movements are used. The 3-D positions of feature
points which are the bare bones of the underwater objects
and the 6-degrees of freedom (DOF) acoustic camera
poses are estimated from an EKF algorithm as the output
information. State vectors, that indicate the camera pose
xc and the positions of feature points xl(1 : n), are defined
as follows:

xc = [xc yc zc ψc θc ϕc]
>
, (1)

xl(1 : n) =
[
x>l1 x>l2 ... x>li ... x>ln

]>
, (2)

xli = [xli yli zli]
>
. (3)

Next, X is defined as the system state vector, whose
elements are xc and xl(1 : n), as follows:

X =
[
x>c xl(1 : n)>

]>
. (4)

Here, P is also defined as the covariance matrix, indicating
the uncertainty of the state vector X, as follows:

P =

[
Pc Pc,l

Pl,c Pl

]
, (5)

where the diagonal elements Pc and Pl are covariance
matrices corresponding to the state vector of the camera
pose and feature points, respectively. The off-diagonal
element Pl,c = Pc,l is the cross-correlation matrices of Pc

and Pl. The EKF-based estimation procedure consists of
a prediction and an update step. First, in the prediction
step, the system state X and corresponding covariance
P are predicted based on the control input data for the
camera movement. Next, in the update step, the system
state X and corresponding covariance P are updated
based on the measurement data.

3.2 Movement model and prediction step

In the prediction step, the state vector Xt and correspond-
ing covariance matrix Pt at time t are predicted as follows:

X̄t = g(ut,Xt−1), (6)

P̄t = GtPt−1Gt
> + Rt. (7)

Here, function g(.) represents a movement model function
of the system, Rt is the process noise, and Gt = ∂g/∂Xt−1
is the Jacobian matrix of the motion model. When ap-
plying the control input ut of the camera movement, the
state vector Xt and corresponding covariance Pt at time
t are predicted based on Xt−1 and Pt−1 by (6) and (7).
In this way, in the prediction step, using the control input
data for the camera movement and the process noise to
predict the state vector and covariance matrix. In this step,
measurement information from the acoustic images is still
yet to be reflected.

3.3 Measurement model and update step

In the update step, the measurement information from
the acoustic images is used to update the state vector Xt
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Fig. 4. Overview of the proposed method. Extended
Kalman filter algorithm is used to estimate the cam-
era pose and the positions of feature points.
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Fig. 5. Overview of measurement model. (Xw, Yw, Zw) is
world coordinate system and (Xc, Yc, Zc) is camera
coordinate system.

and covariance matrix Pt. In this study, the measurement
information is defined as feature points on the acoustic im-
age. The feature points indicate vertices of objects whose
reflection intensity changes suddenly, that make acoustic
pressure values change rapidly in the acoustic image. In
this step, firstly, for each measurement, the expected mea-
sured value is calculated. The expected measured value
can be estimated by a state vector as follows:

ẑt = h(X̄t). (8)

Here, it is necessary to define a measurement model h(.)
for the feature points of the underwater objects. As shown
in Fig. 5, besides the world coordinate system (Xw, Yw,
Zw), the camera coordinate system (Xc, Yc, Zc) is also
defined. From the position information of the feature
point (xli,t, yli,t, zli,t) in the world coordinate system,

the position of the feature point (xli,t
′
, yli,t

′
, zli,t

′
) in the

camera coordinate system is obtained as follows: xli,t′yli,t
′

zli,t
′

 = Rt

[
xli,t − xc,t
yli,t − yc,t
zli,t − zc,t

]
, (9)

where (xc,t, yc,t, zc,t) is the position of the camera, and Rt

is the rotation matrix of the coordinate transformation.
For the acoustic camera, the measurement information ẑt
consists of the distance r̂ and azimuth angle θ̂ which can
be obtained by following equation.

ẑi,t =

[
r̂i,t
θ̂i,t

]
=

[√
xli,t

′2 + yli,t
′2 + zli,t

′2

tan−1(yli,t
′
/xli,t

′
)

]
. (10)

Next, the Kalman gain Kt is calculated from the actually
measured measurement information zt and predicted ẑt as
follows:

Kt = P̄tH
>
t (HtP̄tH

>
t + Qt)

−1. (11)

Then, using the Kalman gain Kt, the state vector Xt

and the covariance matrix Pt are updated as the following
equations.

Xt = X̄t + Kt(zt − ẑt), (12)



Pt = (I −KtHt)P̄t, (13)

where Qt is the noise matrix on the measurement value,
and Ht is the Jacobian matrix of the measurement model.

4. EXPERIMENTAL RESULTS

In order to verify the proposed methodologies, simula-
tion and real experiments were conducted. The proposed
method introduced in Section 3 was applied to measure
the 3-D information of underwater objects.

4.1 Simulation

In the simulation experiment, we assumed that all feature
points and their corresponding relationships are known.
We used a square prism as the underwater object. Its
multiple vertices allow us to extract a plurality of feature
points. The number of feature points was n=8, and the
number of viewpoints was T=21. The error of the move-
ment control was assumed to follow a normal distribution,
and set proportional to the moving amount. In this exper-
iment, the object was fixed and ahead about 2.5 m from
the initial position of the acoustic camera. The trajectory
of the camera was set to always face the direction of the
object. In the 6-DOF of the camera pose (xc, yc, zc, ψc,
θc, ϕc), (xc, yc, zc) represents the 3-D camera position
and (ψc, θc, ϕc) represents the camera orientation. Of all
the trajectory sets of the camera, the values of xc, yc,
zc, ψc fluctuated, meanwhile the values of θc and ϕc were
always 0. As initial set of feature points, we used the first
measured information of each feature point, consisting of
the distance r and azimuth angle θ. The initial values of
the unknown elevation angles φ were set to 0. The relative
position of the camera trajectory and the target object is
shown in Fig. 6.

The errors of the camera pose estimated by the proposed
method and odometry (i.e., only using the motion model,
(6)) are shown in Fig. 7. Figure 7(a) shows the error of
the estimated camera position. As shown in Fig. 7(a), the
error in the odometry accumulates and tends to be large.
However, the error of the estimated camera position which
was obtained using the proposed method is kept within a
certain range. Similarly, the error of the estimated camera
orientation ψc is shown in Fig. 7(b). The similar tendency
as in Fig. 7(a) can also be seen in Fig. 7(b).

The estimation results of the 3-D information of the
feature points are shown in Fig. 8(a). The blue and green
dots represent the initial values and the true values of
each feature point respectively. The red dots represent
the estimated values of each feature point. As shown in
Fig. 8(a), the estimated points are much closer to the
true values although the initial points were set far from
the true values. The relationship between the number of
observations and its estimated error is shown in Fig. 8(b).
In the initial setting, the error of each feature point was
about 0.2 m for feature points (P, Q, R, S) and about
0.3 m for feature points (T, U, V, W). As the number
of observations increases, these errors tend to decrease
gradually and be approximately 0.008–0.012 m at the end
of the estimation results.

Fig. 6. The relative position of the camera and the object.
A square prism was used as the underwater object
and the camera was set to always face the direction
of the object.

Fig. 7. The errors of the camera pose estimated by the
proposed method and odometry: (a) the error of the
estimated camera position and (b) the error of the
estimated camera orientation ψc.



Fig. 8. Experimental results for 3-D reconstruction of the square prism: (a) the 3-D positions of 8 vertices of the square
prism were measured by proposed method. The green dots indicate the ground truth, the blue triangle marks
indicate the initial set values, and the red dots indicate the estimated values and (b) the relationship between the
number of observations and the error of the estimated feature points.

Fig. 9. The acoustic camera and underwater object were used in the real experiment: (a) the acoustic camera (ARIS
EXPLORER 3000) with the pan-tilt module, (b) the experimental environment in turbid tank, and (c) the
underwater object.

4.2 Real experiment

In this subsection, the results of real experiments will be
discussed in order to verify the validity of the proposed
methodologies. The experiment was conducted using ARIS
EXPLORER 3000, as shown in Fig. 9(a). Its detailed
specifications are shown in Table 1. In addition, this
experiment was conducted in a turbid tank, as shown
in Fig. 9(b). We utilized a square prism (200W 200L
300H mm) as the underwater object, as shown in Fig. 9(c).
The experimental conditions were close to the conditions
of the simulation introduced in Subsection 4. 1. The
experimental system with the acoustic camera and square
prism was set up and brought under water, about 4 m from
the water surface. The square prism was set ahead about
2.5 m from the initial position of the acoustic camera. The
acoustic camera was located higher than the objects to
insonify acoustic waves at the objects diagonally. As shown
in Fig. 9(a), the acoustic camera was tilted down about
20 deg.

From this experiment, a number of acoustic images were
acquired at different acoustic camera poses, especially

Table 1. Specifications of ARIS EXPLORER 3000

Identification frequency 3 MHz

Detection frequency 1.8 MHz

Depth Rating 300 m

Identification range rcam 5 m

Azimuth angle θcam 32 deg

Elevation angle φcam 14 deg

Number of transducer beams 128

Beam width 0.25 deg

rolling ψc of the acoustic camera. We defined the world
coordinate with reference to the initial camera pose. In
other words, the 6-DOF of the initial camera pose was (0,
0, 0, 0, 0, 0). The following camera poses were transformed
by rolling by 10 deg from 0 deg to 70 deg. The control input
data for the rolling were obtained from pan-tilt module as
shown in Fig. 9(a).

The acoustic images of the object utilized in 3-D mea-
surement are shown in Fig. 10. Even in turbid water, the
acoustic camera was capable of providing the information
of the object. Four vertices of the square prism, which were
labelled as A, B, C, and D as shown in Fig. 9(c), were



Fig. 10. The real acoustic images of the square prism with different camera poses.

Fig. 11. The results of the real experiment: (a) the estimated result of the feature points in the real experiment and
(b) the errors of the edges of the rectangle.

manually selected as the corresponding feature points in
the acoustic images, as shown in Fig. 10. In the first camera
pose, where ψc = 0, points A and B of the square prism
were closer to the acoustic camera position than points
C and D. Thus, in the first acoustic image, points A and
B were mapped into pixels that correspond with a smaller
range, as shown in left top of Fig. 10. The movement of the
feature points in the real acoustic images corresponding to
the motion of the acoustic camera (i.e., ψc = 0–70 deg) can
be seen from Fig. 10.

Figure 11 presents the results of the measured 3-D feature
points of the object. For the initial set of the feature points,
the values of the unknown elevation angles φ were set to 0.

Thus, the values of initial z of all feature points were 0.
As the number of observations increases, the estimated z
moves down or up as shown in Fig. 11(a). Moreover, the
errors of the lengths of the edges AD and BC tend to
decrease, as shown in Fig. 11(b). Note that the values of x
and y of the feature points did not change much between
the initial setting and the final estimated result as shown in
Fig. 11(a), meanwhile the values of z changed very much.

In the real experiment, as shown in Fig. 9(c), feature
points (A, B) and (C, D) have almost the same height
z, respectively. Thus, when we set the initial values z of
feature points A, B, C, and D same to 0, the lengths of
the edges AB and CD were already close to true values



from the beginning; therefore, the errors of the lengths
of the edges AB and CD were already small from the
beginning and had not tended to decrease, as shown in
Fig. 11(b). Meanwhile, the errors of the edges AD and
BC were reduced significantly. In the initial setting, errors
of the edges AD and BC were about 0.18 m. These errors
decreased gradually and were approximately 0.01 m at the
end of the estimation results.

Consequently, both of the simulation and real experimen-
tal results showed that the proposed methodologies are
effective for the 3-D measurement of underwater objects.

5. CONCLUSION

In this study, we proposed a novel methodology to get
the 3-D information of the feature points of underwater
object based on the EKF using acoustic camera images in
multi-view. By using the probabilistic method based on
the EKF, even though there is uncertainty in the control
input camera, 3-D reconstruction of underwater object
is available. Moreover, since the EKF estimation is se-
quentially performed at each time, our novel methodology
can be used in real-time applications. Experiments were
performed in both simulation and real environments in
order to demonstrate the effectiveness of the proposed
method.

In the future, the automatic extraction and correspon-
dences of features will be addressed. In this study, the
feature point was handled, which is a low-level feature.
In our next work, high-level features such as lines and
plane, which are suitable for acoustic camera images for
automatic extraction and automatic association of the
features, will be considered.
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