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Abstract— In order to understand the underwater environ-
ment, it is essential to use sensing methodologies able to
perceive the three dimensional (3D) information of the explored
site. Sonar sensors are commonly employed in underwater
exploration. This paper presents a novel methodology able to
retrieve 3D information of underwater objects. The proposed
solution employs an acoustic camera, which represents the next
generation of sonar sensors, to extract and track the line of
the underwater objects which are used as visual features for
the image processing algorithm. In this work, we concentrate
on artificial underwater environments, such as dams and
bridges. In these structured environments, the line segments
are preferred over the points feature, as they can represent
structure information more effectively. We also developed a
method for automatic extraction and correspondences match-
ing of line features. Our approach enables 3D measurement
of underwater objects using arbitrary viewpoints based on
an extended Kalman filter (EKF). The probabilistic method
allows computing the 3D reconstruction of underwater objects
even in presence of uncertainty in the control input of the
camera’s movements. Experiments have been performed in real
environments. Results showed the effectiveness and accuracy of
the proposed solution.

I. INTRODUCTION

In recent years, the need for underwater sensing technol-
ogy has increased. There are many problems in underwater
environments such as inspection, survey, and exploration,
etc [1][2]. Until now, many underwater sensing activities
still rely on manpower like divers. However, in some cases,
humans conducting these works directly in underwater en-
vironment face many potential risks. For these cases, it is
desirable to apply a robot such as an autonomous underwater
vehicle (AUV) and a remotely operated underwater vehicle
(ROV) for underwater sensing instead of involving human
directly.

Generally, in underwater environments, sonar sensors are
commonly used. A sonar sensor can obtain reliable informa-
tion even in dark water or muddy water. Therefore, it is the
most suitable sensor for underwater sensing. In this regard,
the measurement of the ocean bottom topography using
seafloor mineral resources, fishery resources, and sonar sen-
sors have been studied. Recently, the development of acoustic
cameras such as dual frequency identification sonar (DID-
SON) and adaptive resolution imaging sonar (ARIS) called
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Fig. 1. Observation of underwater objects using an acoustic camera at
multiple viewpoints.

the next generation ultrasonic sensor has made information
collection in the water environment more effective [3].

Thanks to the high resolution of acoustic images, a number
of methodologies using an acoustic camera based systems for
sensing underwater environments, such as mosaic processing
[4], underwater object detection [5], position estimation of
AUV [6], and underwater acoustic localization [7] have been
proposed.

Further, in other studies, some methodologies for restor-
ing 3D feature points using acoustic images from multi-
ple viewpoints have been proposed by Huang et al. [8],
Aykin et al. [9], Kwak et al. [10], and Ji et al. [11]. In
our previous research, we also proposed a methodology to
obtain the 3D information of the feature points of under-
water objects based on an extended Kalman filter (EKF)
using acoustic camera images at multiple viewpoints [12].
By using the probabilistic method based on the EKF, 3D
reconstruction of underwater objects is available even if
the control input data for movements of the camera has
uncertainty. In our previous research or other research related
3D reconstruction of underwater objects still based on the
low–level feature points. However, with low-level features,
the matching process for features can often fail given that
the features are indistinguishable from each other, which
decreases accuracy of 3D reconstruction. For extraction and
association of feature points, it relies on a priori knowledge
of the features which will be detected and then the manual
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Fig. 2. Acoustic projection model and imaging sonar geometry: (a) geometrical model in the acoustic camera image generation and (b) imaging sonar
geometry. The values of the range r and azimuth angle θ can be obtained from the pixel coordinate of the acoustic image, while the elevation angle
φ is missing. Two coordinate systems are defined here. The world coordinate system (Xw , Yw , Zw) and the camera coordinate system (Xc, Yc, Zc).
(xs, ys, zs) and (xe, ye, ze) represent respectively the 3D information of A and B in the world coordinate. (Cxs, Cys, Czs) and (Cxe, Cye, Cze)
represent respectively the 3D information of A and B in the camera coordinate.

selection of features from the acoustic images.
In this paper, we use line segments instead of points

as a landmark since there are several advantages to use
line segments. We concentrate on the artificial environment.
In this type of structured environment, the line segments
are preferred over the points feature in order to represent
structure information more effectively. For the typical en-
vironment, line features have been used as the landmarks
in many studies using optical cameras for 3D measure-
ment, simultaneous localization and mapping (SLAM), place
recognition, etc [13]–[15].

Moreover, we also propose a method for extracting and
matching of the line features automatically. A conceptual
image of the proposed method based on multiple acoustic
viewpoints is shown in Fig. 1. We use the EKF–based
approach to obtain the 3D information of line features for
underwater objects while estimating the pose of the acoustic
camera.

The rest of the paper is organized as follows. Section II
describes the principle of an acoustic camera. Section III
presents a method for automatic line feature extraction on
acoustic images. Section IV describes our proposed method-
ology. Section V presents the experimental results performed
in a real underwater environment. Finally, conclusion is
drawn in Section VI.

II. PRELIMINARIES OF ACOUSTIC CAMERA

A. Acoustic projection model

The acoustic camera transmits ultrasound waves to the
3D region space to generate an acoustic image. The sensing
range is the maximum range rmax, the maximum azimuth
angle θmax, and the maximum elevation angle φmax, as
shown in Fig. 2(a). The ultrasonic waves propagate forward,
hit the object, and are reflected. The acoustic camera receives

the reflected waves from the object, calculates the power of
the reflected waves, and reports it to the pixel corresponding
to the direction of the reflected wave on the power map.

B. Imaging acoustic geometry

The output of an acoustic camera is 2D acoustic images.
Each point (r, θ, φ) which is representation for polar coor-
dinate system of (x, y, z) in the 3D sensing area is mapped
to (r, θ) in the 2D image, as shown in Fig. 2(b). From the
acoustic image, the range r and the azimuth angle θ are
obtained; however, the elevation angle φ has been lost. For
example, point A(Cxs, Cys, Czs) in the 3D sensing area is
mapped at IA(rs, θs) in the 2D acoustic image, as shown in
Fig. 2(b). Here, superscripts C and I respectively indicate
camera coordinate system and an image coordinate system.
This is due to the way the acoustic camera handles with the
reflected acoustic waves. The acoustic waves reflected from
the object are processed as a function of only the range r
and the azimuth angle θ, not related to the elevation angle φ.
In other words, different points in the 3D sensing area with
same range r and same azimuth angle θ are mapped at same
pixel on the 2D acoustic image.

The conversion of Cartesian coordinates and Spherical
coordinates is given as follows: Cx

Cy
Cz

 =

 r cosφ cos θ
r cosφ sin θ

r sinφ

 . (1)

The conversion of Image coordinates and Spherical coordi-
nates is given as follows:[

Ix
Iy

]
=

[
r cos θ
r sin θ

]
. (2)



Fig. 3. Procedure of line feature extraction and results for extracting line feature of the square plate: (a) original acoustic image, (b) designation of ROI,
(c) using Bilateral filter to smooth the image while preserving the edges, (d) using Canny edge detection to detect the edge of the image, and (e) extracting
line segments by probabilistic Hough transform.

III. LINE SEGMENT EXTRACTION
In this study, the measurement information is defined as

the 2D line segment of the object pictured in the acoustic
image. In this section, we present a methodology for auto-
mated line feature extraction from the acoustic images. The
2D line segment model is defined as shown in Fig. 2(b), one
line segment consists two endpoints IA(rs, θs) and IB(re, θe)
in the polar coordinate of the camera system.

For standard optical cameras, a straight line in 3D space
is projected to a straight line in the 2D image. In the case of
acoustic cameras, linear approximation can be used to project
a straight line in 3D space into the 2D image. Justification
of this assumption is reported below.

Assuming that the points A(Cxs,
C ys,

C zs),
B(Cxe,

C ye,
C ze), and M(Cxm,

C ym,
C zm) are in the

same 3D straight line of the camera field of view (FoV),
v = (a, b, c) is a vector parallel to this line, and the points
are respectively mapped at IA(Ixs, Iys), IB(Ixe, Iye), and
IM (Ixm, Iym) in the 2D acoustic image. The equation
of the straight line, which is passing through the point
M(Cxm,

C ym,
C zm) and parallel to the direction vector v,

can be written as follows:
x−Cxm

a
=
y −C ym

b
=
z −C zm

c
. (3)

Since the points A(Cxs,
C ys,

C zs) and B(Cxe,
C ye,

C ze) are
on the straight line as Eq. (3), the following equations can
be derived:

Cxs −Cxm
a

=
Cys −C ym

b
=

Czs −C zm
c

, (4)

Cxe −Cxm
a

=
Cye −C ym

b
=

Cze −C zm
c

. (5)

As shown in Table I, with respect to the elevation direction φ,
the sensing range of the acoustic camera is very small, only
about 15 deg (i.e., from -7 deg to 7 deg). This means that
the value of cosφ is almost 1. From Eqs. (1) and (2), the
relationship between the values of points A, B, and M in
the camera coordinate and in the image coordinate can be
obtained as follows:

(Ixs,
Iys) ' (Cxs,

Cys), (6)

(Ixs,
Iys) ' (Cxs,

Cys), (7)

(Ixe,
Iye) ' (Cxe,

Cye). (8)

Substituting Eqs. (6), (7) and (8) into Eqs. (4) and (5), the
following equation can be obtained:

Iys −I ym
Ixs −Ixm

'
Iye −I ym
Ixe −Ixm

' b

a
. (9)

Therefore, IA, IB, and IM appear to be on the same straight
line. In conclusion, the straight line in the 3D space is
mapped as almost straight line in the 2D acoustic image.

Therefore, the line segment AB which consists of two
endpoints A(xs, ys, zs) and B(xe, ye, ze) in the 3D camera
FoV becomes the line segment IAIB which consists of two
endpoints IA(rs, θs) and IB(re, θe) in the 2D acoustic image.

Figure 3 illustrates the whole process of line feature
extraction. Firstly, the range to be analyzed is selected and
limited by the region of interest (ROI), as shown in Fig. 3(b).
Next, in order to improve line feature extraction accuracy, a
Bilateral filter is used to eliminate noise (Fig. 3(c)). By using
the Bilateral filter, the smoothing of the image preserves the
edges. Then, the edge of the images are extracted by Canny
edge detection (Fig. 3(d)). After edge detection, not only
the lines but also the endpoints of the line segments are
extracted by using probabilistic Hough transform [16] with
a high reliability, as shown in Fig. 3(e).

IV. EKF-BASED 3D LINE ESTIMATION

A. Problem setting and formulation

A schematic representation of the method proposed in this
research is shown in Fig. 4. The input of the algorithm is
the 2D information of line segments extracted from acoustic
images and control input data for movements of the camera.
The output is the 3D information of line segments which are
the bare bones of the underwater objects and the six degrees
of freedom (6DoF) of camera poses. An EKF algorithm
is used for the estimate. Euler angles are used for camera
orientation.

State vectors xc, xli, and xl(1:n) respectively represent the
camera pose, the 3D information of each line segment, and
the 3D information of all line segments, as follows:

xc = [xc yc zc ψc θc ϕc]
>
, (10)

xli = [xlis ylis zlis xlie ylie zlie]
>
, (11)



Fig. 4. Schematic representation of the proposed method. Extended Kalman
filter algorithm is used to estimate the camera pose and the 3D information
of line segments.

xl(1:n) =
[
x>l1 x>l2 ... x>li ... x>ln

]>
. (12)

Here, the line segment is defined by start point
(xlis, ylis, zlis) and end point (xlie, ylie, zlie). n is number of
line segments. System state vector X indicating the 6DoF
camera pose xc and the 3D information of line segments
xl(1:n) are defined as follows:

X =
[
x>c x>l(1:n)

]>
. (13)

Next, P is also defined as the covariance matrix, indicating
the uncertainty of the state vector X , as follows:

P =

[
Pc Pc,l
Pl,c Pl

]
, (14)

where the diagonal elements Pc and Pl are covariance
matrices for the estimation of camera pose and line seg-
ments, respectively. The off-diagonal element Pl,c = Pc,l is
covariance matrices for the estimation of camera and line
segments.

The estimation procedure consists of a prediction and
an update step. In the prediction step, the system state
X and corresponding covariance P are predicted based
on the control input data for the camera movement. Next,
in the update step, the system state X and corresponding
covariance P are updated based on the observation data.

B. Prediction

In the prediction step, the state vector X̄t and correspond-
ing covariance matrix P̄t at time t are predicted as follows:

X̄t = g(ut,Xt−1), (15)

P̄t = GtPt−1Gt
> + Mt. (16)

Here, function g(.) represents a motion model function of
the system, Mt is the covariance of the control input noise,
and Gt = ∂g/∂Xt is the Jacobian for the motion model.
The control input ut is defined as follows:

ut = [∆xt ∆yt ∆zt ∆ψt ∆θt ∆ϕt]
>
. (17)

The motion model g(.) for predicting the next state vector
X̄t is given as follows:

X̄t = Xt−1 +

[
I(6)

0(6n×6)

]([
Dt 0(3×3)

0(3×3) Et

]
ut

)
,

(18)

Dt=

 cθcϕ cϕsθsψ−cψsϕ sψsϕ+cψcϕsθ
cθsϕ cψcϕ+sθsψsϕ cψsθsϕ−cϕsψ
−sθ cθsψ cθcψ

, (19)

Et=

 1 tθsψ −tθcψ
0 cψ sψ
0 sψ/cθ cψ/cθ

, (20)

where c, s, t represent sine, cosine and tangent funtions,
respectively. Here, I(6), 0(6n×6), and 0(3×3) are respectively
6 rowed identity matrix, 6n× 6 zero matrix, and 3× 3 zero
matrix.

Using this approach the control input data ut and the
covariance of the control input noise Mt are used to predict
the state vector X̄t and covariance matrix P̄t.

C. Update

The updating phase uses the observation information from
the acoustic images is used to update the state vector Xt

and covariance matrix Pt. In this study, the observation
information is defined as line feature on the acoustic image.
In this step, firstly, for each observation, the expected obser-
vation value is calculated. Next, by comparing the expected
observation value with the observed value, the state vector
and covariance will be corrected.

The expected observation value can be estimated from
the predicted state vector. Here, it is necessary to define
an observation model ẑt = h(X̄t) for the line feature of
the acoustic image. As shown in Fig. 2, besides the world
coordinate system {W}, the camera coordinate system {C}
is also defined. In order to construct the observation model,
it is necessary to first convert the 3D information of the line
segment from world coordinate to camera coordinate and
then estimate the expected observation value next.

First, for converting coordinates, from the 3D information
of two endpoints of the line segment (xlis,t, ylis,t, zlis,t)
and (xlie,t, ylie,t, zlie,t) in the world coordinate system,

TABLE I
SPECIFICATIONS OF ARIS EXPLORER 3000

Identification frequency 3 MHz
Detection frequency 1.8 MHz

Depth rating 300 m
Identification range 5 m
Range resolution Down to 3 mm

Field of view 30 deg × 15 deg
Beam width 0.25 deg

Number of transducer beams 128
Frame rate Up to 15 frames / second

TABLE II
EXPERIMENTAL RESULTS

Line True length Estimated length Error
segment [cm] [cm] [cm]

AB 30 31.43 1.43
BC 30 30.53 0.53
CD 30 33.85 3.85
DA 30 29.40 0.60



Fig. 5. The acoustic camera and underwater object were used in the real experiment: (a) The acoustic camera (ARIS EXPLORER 3000) with the pan-tilt
module, (b) The experimental system in turbid tank, and (c) The underwater object.

the 3D information of two endpoints of the line segment
(Cxlis,t, Cylis,t, Czlis,t) and (Cxlie,t, Cylie,t, Czlie,t) in the
camera coordinate system is obtained as follows: Cxlis,t

Cylis,t
Czlis,t

 = Rt

 xlis,t − xc,t
ylis,t − yc,t
zlis,t − zc,t

 , (21)

 Cxlie,t
Cylie,t
Czlie,t

 = Rt

 xlie,t − xc,t
ylie,t − yc,t
zlie,t − zc,t

 , (22)

where Rt is the rotation matrix for the coordinate transfor-
mation, which is defined as follows:

Rt =

[
cθcϕ cψsϕ+cϕsθsψ sψsϕ−cψcϕsθ

−cθsϕ cψcϕ−sθsψsϕ cϕsψ+cψsθsϕ
sθ −cθsψ cθcψ

]
. (23)

The expected observation value ẑt composed of the 2D
information of the start point and the end point of the line
segment (r̂is,t, θ̂is,t, r̂ie,t, θ̂ie,t) can be estimated as follows:

ẑi,t =


r̂is,t
θ̂is,t
r̂ie,t
θ̂ie,t



=


√
Cxlis,t

2
+ Cylis,t

2
+ Czlis,t

2

atan2(Cylis,t,
Cxlis,t)√

Cxlie,t
2

+ Cylie,t
2

+ Czlie,t
2

atan2(Cylie,t,
Cxlie,t)

 . (24)

Next, the Kalman gain Kt is calculated as follows:

Kt = P̄tH
>
t (HtP̄tH

>
t + Qt)

−1. (25)

Then, the state vector Xt and the covariance matrix Pt are
updated based on the Kalman gain Kt, as follows:

Xt = X̄t + Kt(zt − ẑt), (26)

Pt = (I −KtHt)P̄t, (27)

where Qt is the corvaricance of the observation noise, Ht

is the Jacobian for the observation model, and zt is actually
observed value. Ht is defined as follows:

Ht =
[
Hc,t 04×6(i−1) Hl,t 04×6(n−1)

]
. (28)

Here, Hc,t = ∂h/∂Xt−1 and Hl,t = ∂h/∂xli,t−1 are
respectively Jacobian for camera pose and Jacobian for ith

line segment.
By repeating the prediction and updating, the camera pose

and the 3D information of each line segment are estimated
at each time.

V. EXPERIMENT

In order to verify the proposed method, an experiment
has been carried out by using the ARIS EXPLORER 3000
as shown in Fig. 5(a). The specification of the camera are
reported in Table I. A square plate (30W × 30L × 2H cm)
was used as an underwater object as shown in Fig. 5(c). An
experimental system equipped with the acoustic camera and
the underwater object was set up and placed into a turbid
tank, as shown in Fig. 5(b). Underwater objects were set
about 2 m away from the initial position of the acoustic
camera. The acoustic camera was placed at a position higher
than the object so that sound waves of the object were
obliquely heard, as shown in Fig. 5(b). From this experiment,
multiple acoustic images were acquired with various acoustic
camera poses. We defined the world coordinate frame with
reference to the first camera pose. In other words, the 6DoF
of the initial camera pose was (0, 0, 0, 0, 0, 0). By rotating
the roll axis of the acoustic camera (10 deg from 0 deg to 60
deg), acoustic images were acquired from several different
viewpoints. Control input data for rolling was obtained from
pan–tilt module as shown in Fig. 5(a).

Acoustic images of the object used for the 3D measure-
ment is shown in Fig. 6(a). Even in turbid water, the acoustic
camera was able to provide clear information of the object.

Figure 6(b) shows the results of reconstructed line seg-
ments in 3D space. Table II compares the estimated values
with the true value and lists the estimated errors. Conse-
quently, the results showed that the proposed methodology



Fig. 6. The experiment results: (a) The real acoustic images of the square board with different camera poses and (b) The estimated result of line segments.
The real acoustic images of the square board with different camera poses.

could accurately reconstruct 3D line segments with small
errors about 0.53–3.85 cm.

VI. CONCLUSION

In this study, we proposed a novel methodology to recon-
struct the 3D information of the lines feature for the underwa-
ter object based on the EKF using acoustic camera images
captured from multi-viewpoints. By using the probabilistic
method based on the EKF, 3D reconstruction of underwater
objects can be conducted with the high accuracy. Moreover,
we also developed a novel methodology for automatic line
feature extraction. Experiments were performed in real en-
vironments in order to demonstrate the effectiveness of the
proposed method.

In the future, 3D reconstruction methodology for more
general structure with more complicated shape will be ex-
plored.

ACKNOWLEDGMENT

The authors would like to thank S. Fuchiyama, A.
Ueyama, K. Okada and their colleagues at KYOKUTO Inc.
for full access to their facilities for the real experiment. We
would also like to thank Y. Yamamura, F. Maeda, S. Imanaga
at TOYO Corp. who helped in this research project over a
day for the equipment set up and the acquisition of the sonar
data. We also would like to express my gratitude to Dr. A.
Faragasso for her great feedback and comments.

REFERENCES

[1] D. R. Yoerger, A. M. Bradley, B. B. Walden, M. H. Cormier, and
W. B. F. Ryan, “Fine–Scale Seafloor Survey in Rugged Deep–Ocean
Terrain with an Autonomous Robot,” in Proc. 2000 IEEE Int. Conf.
Robotics and Automation, pp. 1767–1774, 2000.

[2] Y. W. Huang, Y. Sasaki, Y. Harakawa, E. F. Fukushima, and S. Hirose,
“Operation of Underwater Rescue Robot Anchor Diver III During the
2011 Tohoku Earthquake and Tsunami,” in Proc. 2011 MTS/IEEE
OCEANS, pp. 1–6, 2011.

[3] E. Belcher, W. Hanot, and J. Burch, “Dual–Frequency Identification
Sonar (DIDSON),” in Proc. 2002 International Symposium on Under-
water Technology, pp. 187–192, 2002.

[4] N. Hurtos, S. Nagappa, N. Palomeras, and J. Salvi, “Real–
Time Mosaicing with Two–Dimensional Forward–Looking Sonar,”
in Proc. 2014 IEEE Int. Conf. Robotics and Automation,
pp. 601–606, 2014.

[5] H. Cho, J. Gu, H. Joe, A. Asada, and S. C. Yu, “Acoustic Beam
Profile–Based Rapid Underwater Object Detection for an Imaging
Sonar,” Journal of Marine Science and Technology, vol. 20, no. 1,
pp. 180–197, 2015.

[6] H. Johannsson, M. Kaess, B. Englot, F. Hover, and J. Leonard,
“Imaging sonar–aided navigation for autonomous underwater harbor
surveillance,” in Proc. 2010 IEEE/RSJ Int. Conf. Intelligent Robots
and Systems, pp. 4396–4403, 2010.

[7] J. Li, P. Ozog, J. Abernethy, R.M. Eustice, and M. Johnson-Roberson,
“Utilizing High-dimensional Features for Real-time Robotic Applica-
tions: Reducing the Curse of Dimensionality for Recursive Bayesian
Estimation,” in Proc. 2016 IEEE/RSJ Int. Conf. Intelligent Robots and
Systems, pp. 1334–1341, 2016.

[8] T. A. Huang and M. Kaess, “Towards Acoustic Structure from Motion
for Imaging Sonar,” in Proc. 2015 IEEE/RSJ Int. Conf. Intelligent
Robots and Systems, pp. 758–765, 2015.

[9] M. D. Aykin and S. Negahdaripour, “On 3D Target Reconstruc-
tionfrom Multiple 2D Forward–Scan Sonar Views,” in Proc. 2015
MTS/IEEE OCEANS, pp. 1–6, 2015.

[10] S. Kwak, Y. Ji, A. Yamashita, and H. Asama, “3D Reconstruction
of Underwater Objects Using Arbitrary Acoustic Views,” in Proc.
2016 11th France–Japan Congr. Mechatronics 9th Europe–Asia Congr.
Mechatronics 17th Int. Conf. Research and Education in Mechatronics,
pp. 74–79, 2016.

[11] Y. Ji, S. Kwak, A. Yamashita, and H. Asama, “Acoustic Camera–
based 3D Measurement of Underwater Objects through Automated
Extraction and Association of Feature Points,” in Proc. 2016 Int.
Conf. Multisensor Fusion and Integration for Intelligent Systems,
pp. 224–230, 2016.

[12] N. T. Mai, H. Woo, Y. Ji, Y. Tamura, A. Yamashita, and H. Asama,
“3D Reconstruction of Underwater Object Based on Extended Kalman
Filter by Using Acoustic Camera Images,” Preprints of the 20th
World Congress of the International Federation of Automatic Control,
pp. 1066–1072, 2017.

[13] A. P. Gee and W. Mayol-Cuevas, “Real-time model-based SLAM using
line segments,” in Proc. 2006 IEEE Int. Symp. Visual Computing,
pp. 354–363 , 2006.

[14] J. H. Lee, G. Zhang, J. Lim, and I. H. Suh, “Place recognition using
straight lines for vision-based SLAM,” in Proc. 2013 IEEE Int. Conf.
Robotics and Automation, pp. 3799–3806, 2013.

[15] R. I. Hartley, “A Linear Method for Reconstruction from Lines
and Points,” in Proc. 1995 IEEE Int. Conf. Computer Vision,
pp. 882–887, 1995.

[16] N. Kiryati, Y. Eldar, and A. M. Bruckstein, “A Probabilistic Hough
Transform,” Pattern Recognition, vol. 24, no. 4, pp. 303–316, 1991.


