スペックルに基づく位置・姿勢推定と光切断法による狭隘構造内部の高精度3次元計測

樋口 寛, 藤井 浩光, 谷口 敦史, 渡辺 正浩, 山下 淳, 淺間 一

淺間研究室・山下研究室

【背景】

油圧機器, エンジン内部の点検自動化の要求

【目的】

長尺狭隘構造内部の高精度3次元計測

【手法】

計測システム

内視鏡を用いた移動計測

・断面計測:リングレーザによる光切断法

・位置・姿勢推定:スペックルの利用

スペックル

粗面へのレーザ照射により発生

→テクスチャレス環境で特徴量生成が可能

位置・姿勢推定

Speckle pattern

スペックルの性質を考慮した運動モデルの構築

【実験】提案3次元計測手法の原理検証

【結果・考察】

従来モデルに比べて高精度の計測を実現 内視鏡計測への応用が今後の課題

Result of 3D measurement

3D Measurement of Narrow Structure by Structured Light and Speckle Based Pose Estimation

Hiroshi Higuchi, Hiromitsu Fujii, Atsushi Taniguchi, Masahiro Watanabe, Atsushi Yamashita, and Hajime Asama Asama Lab, / Yamashita Lab.

Background

Requirement of automatic inspection of pump and engine

Objectives

Accurate 3D measurement of narrow and long structure

Methods

System of measurement

Measurement using endoscope

- •Cross section: structured light by line laser
- •Pose estimation: use of speckle

Speckle pattern

Generated by laser irradiation to coarse surface

→ Possible to generate features in texture-less environment

Pose estimation

Build a motion model considering character of speckle

Experiment: verification of measurement principle

Results and Discussions

Better result than previous method Application to the endoscope is future work

Result of 3D measurement