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Abstract: When mobile robots execute autonomous tasks, map information is important in path planning and self-
localization. In unknown environments, mobile robots must generate their own environmental maps. This paper proposes
three-dimensional (3D) environment modeling by a mobile robot. The model is generated from results of 3D measurement
and texture information. To measure environmental objects efficiently, the robot uses an image sequence acquired by an
omnidirectional camera with wide field of view. The measurement method is based on structure from motion. Triangular
meshes are constructed from 3D measurement data. The 3D model is constructed by texture mapping to the triangular
mesh, proven by experimental result to be effective.
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1. INTRODUCTION

When mobile robots execute autonomous tasks, map
information is important in path planning and self-
localization. In unknown environment, mobile robots
must construct their own environmental maps.

Three-dimensional (3D) measurement using image
data enables map information to be generated [1]. How-
ever, images acquired by conventional cameras have a
limited field of view [2]. With fisheye [3] and omnidi-
rectional [4] [5] cameras, however, omnidirectional shots
providing full environmental measurement and recogni-
tion are possible, as shown by Gluckman and Nayar using
an omnidirectional camera [6].

In stereo vision using two omnidirectional cameras
[7], measurement accuracy depends on the baseline
length – the longer the baseline, the better the accuracy.
Motion stereo vision uses stereo image pairs taken at dif-
ferent observation points by a single camera, enabling the
baseline to be made longer without restriction of robot
size [8]. This means motion stereo vision measures more
accurately than binocular stereo vision.

Measurement is made even more accurate using laser
sensor fusion [9] or geographical positioning systems
(GPS) [10] with an omnidirectional camera. However,
problems arise in limitation of measurement objects and
situations, and it makes system calibration process com-
plex.

Structure from motion (SFM), a type of motion stereo
vision, calculates camera movement using corresponding
positioning relationships among points in images taken
at different observation points, then measures objects in
these images.

Our SFM-based proposal extracts and tracks features
to get corresponding points in an omnidirectional image
sequence. Using positioning relationships, it calculates
camera movement and measures environmental objects,
generating triangular meshes from measurement data and
constructing a 3D environment model by texture mapping
to the triangular mesh.

Camera movement must be determined precisely to
improve SFM measurement accuracy. Triangular meshes
must also be optimized to match the physical environ-
ment.

2. OVERVIEW

A mobile robot using an omnidirectional camera such
as shown in Fig.1 executes 3D measurement and mod-
eling, acquiring an omnidirectional image sequence as it
moves.

As shown in Fig.2, feature points are extracted and
tracked to get corresponding points in an omnidirectional
image sequence. Using linear estimation, camera move-
ment is calculated using the positioning of correspond-
ing points in two images taken from different observation
points and triangulating 3D objects point coordinates.
Nonlinear estimation is more precise than linear estima-
tion. Individual measurement data is integrated and a tri-
angular mesh generated from measurement data by De-
launay triangulation, eventually constructs a 3D environ-
ment model by texture mapping to the triangular mesh.

3. ALGORITHM

3.1 Acquiring Corresponding Points
To get point correspondence between images in the

omnidirectional image sequence, we use the Lucas
Kanade tracker algorithm with image pyramid represen-
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Fig. 1 Mobile Robot and Omnidirectional Image
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tation [11], as shown in Fig.3, which extracts feature
points in the initial image, then tracks them along the se-
quence. Tracked feature points are regarded correspond-
ing between two images taken at different observation
points.

3.2 Calculating Camera Movement
A. Calculating Essential Matrix

We define a unit vector originating from the center of
projection to an object point in 3D space as ray vector
r = [x, y, z]T . T is vector or matrix transposition. The
omnidirectional camera has a hyperboloid mirror in front
of the lens of a conventional camera. As shown in Fig. 4,
ray vectorr is directed from the hyperboloid mirror focus
to the ray reflection point on the mirror.

Ray vectorr is calculated as follows:

r =

 su
sv

sf − 2c

 (1)

s =
a2

(
f
√

a2 + b2 + b
√

u2 + v2 + f2
)

a2f2 − b2(u2 + v2)
(2)

[u, v]T are the image coordinates of the feature point.a,
b, andc are hyperboloid parameters andf is the image
distance between the center of the lens and the image
plane.

Matrix E, the essential matrix, satisfies the following:

r′Ti Eri = 0 (3)

where ray vectorsrT
i = [xi, yi, zi]T , r′Ti = [x′

i, y
′
i, z

′
i]

T

are those of the corresponding point in two images. The
essential matrix contains information about relative po-
sitioning and orientation differences between two obser-
vation points. Camera rotation matrixR and translation

Fig. 3 Feature Extraction and Tracking
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vectort are calculated from essential matrixE by singu-
lar value decomposition. Calculating essential matrixE
is equivalent to estimating camera movement. 3D object
point coordinates are measured using estimated camera
movement. With measurement precision depending on
camera movement estimation precision, it is vital impor-
tant to estimate essential matrixE precisely.

Eq.(3) is transformed as follows:

uTe = 0 (4)

where
u = [xix

′
i, yix

′
i, zix

′
i, xiy

′
i, yiy

′
i, ziy

′
i, xiz

′
i, yiz

′
i, ziz

′
i]

T

e = [e11, e12, e13, e21, e22, e23, e31, e32, e33]T

ejk is the rowj and columnk element of matrixE.
Essential matrixE is obtained by solving simultaneous
equations for more than eight pairs of corresponding ray
vectors, as follows:

min
e

∥ Ue ∥2 (5)

whereU = [u1, u2, , un]T . e is the eigenvector of the
smallest eigenvalue ofUT U, yielding essential matixE.

Essential matrixE is estimated using corresponding
points (Section 3.1). However, if these include outliers,
estimated camera movement precision is compromised,
so, we reject these outliers as detailed below, estimat-
ing essential matrixE using the remaining corresponding
points.

B. Outlier Rejection

Not all feature points tracked in the image sequence
correspond satisfactorily due to image noise, etc. Mis-
tracked feature points should be rejected, which we do us-
ing the random sample consensus (RANSAC) algorithm
[12].

Eight feature points – the minimum number for deter-
mining essential matrixE – are selected randomly. Let
Erand be the essential matrix determined using these fea-
ture points, andk be the number of feature points satisfy-
ing following, whereq is a given threshold:

|r′Ti Erandri| < q (6)



Determining essential matrixErand and numberk are
repeated for a predetermined number of times, then we
choose the case with the maximum number ofk, remove
feature points as outliers not satisfying Eq.(6), and cal-
culate essential matrixE again using remaining feature
points.

C. Decision of Feature Point Number

The eight-point algorithm calculates rotation matrixR
and translation vectort if we get at least eight pairs of
corresponding points. Many more than eight pairs are de-
sirable improve camera movement precisely due to errors
in images.

If we extract too many feature points, however, cam-
era movement estimation precision decreases due to the
limited number of feature points that can be tracked pre-
cisely in an image sequence. Figure 5 shows an example
of the relationship between the number of all extracted
feature points and the number of outliers. Here,Ok is
the number of the outliers when the number of extracted
feature points isk.

When most feature points can be correctly tracked, a
few outliers included in the feature points are located on
the edges of objects. If feature points are located on
the edge, correspondence error often occurs, but these
feature points are few compared to all extracted feature
points cause the Lucas Kanade algorithm evaluates fea-
ture points on the corner well, so these feature points are
easily rejected using RANSAC if they influence camera
movement estimation unfavorably.

If, we extract too many feature points, most added fea-
ture points newly have poor features, so we should decide
how many feature points are to be used in measurement.

To automatically decide the optimum number of fea-
ture points to use in measurement, we define this as the
number of feature points including the maximum num-
ber of outliers in a range in which camera movement is
still estimated precisely enough. From the above, we give
Eq.(7) and (8) as follows:
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whereOi is the number of outliers when the number of
extracted feature points isi. Equation (7) represents the
slope of the straight line calculated by the least squares
method, soζ(k) shows the increase in the number of
outliers when the number of the extracted feature points
changes fromk to (k + w). ζ(k) is calculated stably by
settingw appropriately.t in Eq.(8) is a given threshold.

The relationship between number of extracted feature
pointsk is not proportional to the increase in number of
outliersζ(k), as shown in Fig.6. Extracting more than a
suitable number of feature points increases the number of
outlier drastically while also increasingζ(k). In Fig.6, if
thresholdt in Eq.(8) ists, maximum numberk satisfying
Eq.(8) isks. In Fig.5, when the number of extracted fea-
ture points isks, the number of extracted feature points
is large enough to make a detail environment model, and
number of outliersOks is sufficiently smaller thanks, i.e.,
the number of all extracted feature points, so, we calcu-
late maximumk satisfying Eq.(8) as the optimum number
of feature points in measurement.

D. Calculation of Camera Movement Parameters

Essential matrixE is represented by rotation matrixR
and translation vectort = [tx, ty, tz]T .

E = RT (9)

T is a matrix given as follows:

T =

 0 −t3 t2
t3 0 −t1
−t2 t1 0


We calculateR andT from the essential matrixE by

singular value decomposition.

3.3 3D Measurement
3D coordinates of object points are calculated by trian-

gulation with two cameras in the geometrical relationship
given by rotation matrixRm and translation vectortm,
wherem is the number of observation points. We cal-
culate 3D coordinates of object pointpm,i (i-th feature
point) using rotation matrixRm, translation vectortm,
and two ray vectorsr1,m,i andr2,m,i as shown in Fig.7.

Measurement accuracy is lower when an object point
is close to the baseline or far from the camera, so, we
evaluate measurement accuracy based on the differentia-
tion of measurement resultpm,i, defining an error vector
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calculated by Eq.(10) as the evaluation of measurement
accuracy.

gm,i =
∣∣∣∣∂pm,i

∂u1,m,i

∣∣∣∣+∣∣∣∣∂pm,i

∂v1,m,i

∣∣∣∣+∣∣∣∣∂pm,i

∂u2,m,i

∣∣∣∣+∣∣∣∣∂pm,i

∂v2,m,i

∣∣∣∣(10)

[um,i, vm,i]T and [u′
m,i, v

′
m,i]

T are i-th image coordi-
nates of the two feature points at them-th observation
point. We select measurement results satisfying Eq.(11),
whereh is a threshold:

||gm,i|| < h (11)

3.4 Bundle Adjustment
As explained above, we estimate camera movement

based on measurement errors in each feature point, using
bundle adjustment to give a nonlinear least squares solu-
tion by minimizing the sum of reprojection errors [13].
To calculation reprojection errors, we use the result of
camera movement (Section 3.2) as initial parameters. Re-
projection error is the difference between original feature
point and reprojected coordinates. If reprojection error
is low, camera movement is estimated is highly precise.
Reprojected feature point coordinates are calculated as
follows: u

v
−c + f

 = d′

 dx
dy

dz + 2c

 −

 0
0
−c

 (12)

d =
cz′ + b

√
x′2 + y′2 + z′2(

b

a

)2

(x′2 + y′2) − z′2

(13)

d′ =
f

dz′ + 2c
(14)

We define the sum of feature reprojection errors as fol-
lows:

Em =
∑

i

rm,i

∣∣xm,i − x′
m,i

∣∣2 (15)

Em is the sum of feature reprojection errors at them-
th observation point,rm,i the weight factor for thei-th
feature point calculated evaluating error in each feature
point,xm,i the original feature point coordinate, andx′

m,i

the reprojected coordinate. The norm of vectorgm,i cal-
culated by Eq.(10) evaluates following error:

rm,i =
1∥∥gm,i

∥∥ (16)

Rm , tm

r1,m,i r2 ,m,i
pm,i

Observation point 1 Observation point 2
Fig. 7 Calculation of 3D Coordinates

Fig. 8 Triangular Mesh Optimization

gm,i is a vector expressing the measurement accuracy of
the i-th feature point at them-th observation point. We
add a larger weight to feature points with smaller vectors,
i.e., small error.

3.5 Integrating Results

To integrate the above measurement results, we solve
scale ambiguity among individual measurements by scale
matching [14]. After scale matching, more than two mea-
surement results may show the same object point, so we
integrate these into one object point voting for voxels di-
vided in 3D space. The 3D coordinate of the object point
is the coordinate of the voxel having the largest value.

3.6 Modeling

Delaunay triangulation often generates a triangular
mesh contradicting physical shape by failing to consider
measurement object shape. We apply triangular opti-
mization [15] to the triangular mesh (Fig.8). The method
adapts the triangular mesh to the physical shape by de-
tecting texture distortion. Texture mapping to the trian-
gular mesh yields a 3D environment model.

4. EXPERIMENTS

In experiments, we decide thresholdsq, h, w, andt by
trial and error. Using an omnidirectional camera on a ma-
nipulator, we treat manipulator movement as true camera
movement by having manipulator form a square, then es-
timated camera movement 4 times between each apex of
the square. Camera start and end locations are the same.
The square is 350 millimeters on the side, as shown in
Fig.9. Thresholdq is set to 0.03,h to 0.15,w to 50, andt
to 0.4.

Table 1 shows estimated camera locations. Figures 10
and 11 graph Table 1, where camera locations A, B, C,
D, and E correspond to apexes of the square traced by

AB
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�1�2

3 5 0 m m

Fig. 9 Camera Movement – Translation Alone



Table 1 Camera Location Result – Translation Alone

Without Our Proposal with Our Proposal
X Y Z X Y Z

A 0 0 0 0 0 0
B -0.995 0.071 -0.026 -0.994 0.087 -0.032
C -1.032 0.040 0.958 -1.018 0.034 0.979
D 0.080 -0.654 1.015 -0.039 -0.040 1.007
E -0.077 -0.036 0.029 -0.031 0.031 0.029

A–E 0.089 0.052Distance

Table 2 Distance Results

Without Our ProposalWith Our Proposal
AB 1.000 1.000
BC 0.986 1.015
CD 1.315 0.983
DE 1.176 0.982

Average 1.119 0.995
Standard Deviation 0.135 0.0134

Maximum Error 0.195 0.020from Average

Table 3 Direction Result

Without Our ProposalWith Our Proposal
θ1 [deg] 89.5 90.8
θ2 [deg] 88.4 89.5
θ3 [deg] 115.4 91.4
θ4 [deg] 78.9 88.3

Average [deg] 93.0 90.0
Standard Deviation [deg] 13.9 1.22

Maximum Error [deg] 15.4 0.6

the manipulator in Fig.9. Results not using our proposal
show unnatural camera movement not tracing a square,
whereas results using our proposal nearly trace a square.
In Table 2, our proposal makes standard deviation and
maximum error one tenth that of results not using our
proposal. In Table 3, results using our proposal make
standard deviation and maximum error 25 times smaller
than results not using our proposal.

For camera movement including rotation and transla-
tion, Fig.12 shows true camera movement in this experi-
ment. The blue axis is camera rotation axisθ, the green
axis camera rotation axisϕ, and the red axis camera rota-
tion axisψ. A manipulator with an omnidirectional cam-
era traced arcs AB, BC and CD with rotation. Camera
location and positioning at end point D are equivalent to
those at start point A. Camera positioning change isR
(θ [deg], ϕ [deg], ψ [deg]) rotation around each rotation
axis θ, ϕ, andψ, and camera positioning changet (X
[mm], Y [mm], Z [mm]), which is the translation paral-
lel to each axisX, Y , andZ. Movement along arcs AB,
BC and CD aret (0, 350, -350) andR (-90, 0, 0),t (350,
-350, 0) andR (0, 90, 0), andt (0, -350, 350) andR (0,
-90, 90). Thresholdq is set to 0.02,h to 0.08,w to 50,
andt to 0.4.

Table 4 shows estimated camera locations at A, B, C,
and D, and the distance from A to D, where the distance
between A and B is 1. Figures 13 and 14 graph Table 4,
where blue marks A, B, C, and D correspond to camera

locations A, B, C, and D in Fig.12. The distance between
A and D using our proposal is one tenth that not using
our proposal. Table 5 shows estimated results of camera
rotation from A to B, B to C, and C to D. Standard devi-
ation and maximum error are calculated using true cam-
era movements. Result using our Proposal has smaller
standard deviation and maximum error than that not us-
ing our proposal. Estimation errors are due to outliers
and low-accuracy measurement points, which showing
that our proposal rejects outliers and selects highly accu-
rate measurement points, demonstrating its effectiveness
in measurement including data with errors.

We measured two environments shown in Fig.15(a) a
passageway including an L-shape corner and shown in
Fig.15 (b) a room. We acquired environment image se-
quences (10 fps) using a mobile robot that moved at 10
cm/s and used an omnidirectional camera. Sequence im-
age were 1920× 1080 pixels. In the passageway experi-
ment, thresholdq is set to 0.02,h to 0.2,w to 50, andt to
0.8. In the room experiment, thresholdq is set to 0.02,h
to 0.8,w to 50, andt to 0.4.

Figure 16 shows integrated passageway measurement
results. Blue marks in the results show the robot trajec-
tory and red marks measurement data. Camera move-
ment estimated using our proposal (Section 3.2-B and
C, Eq.(10) and (11) in Section 3.3, and Section 3.4) has
higher precision than that not using it because outliers
and low-accuracy measurement points are almost all re-
moved in Fig.16 (a), indicating our proposal measured
the passageway shape correctly as shown by the lack of
little contradiction between camera movement and inte-
grated measurement data.

We constructed a 3D environment model of the pas-
sageway using measurement results using our proposal,
as shown in Fig.16 (b). Figure 17 shows a bird’s-eye
view and Fig.18 actual environmental images at left and
details at right. Although the model contains some tex-

Table 4 Camera Location Results – Rotation and
Translation

Without Our Proposal With Our Proposal
X Y Z X Y Z

A 0 0 0 0 0 0
B -0.102 0.794 -0.633 -0.086 0.778 -0.621
C 0.779 0.062 -0.559 0.643 0.135 -0.610
D -0.305 -0.568 0.324 -0.008 -0.069 -0.030

A–D 0.721 0.076Distance

Table 5 Camera Positioning Change Results

Without Our Proposal With Our Proposal
θ ϕ ψ θ ϕ ψ

[deg] [deg] [deg] [deg] [deg] [deg]
A-B -86.9 -8.5 -3.3 -86.0 -7.5 -3.6
B-C -2.6 80.1 8.3 -0.9 81.8 5.5
C-D 1.2 -82.4 98.0 -0.8 -85.2 89.4

Standard 6.5 4.6Deviation
Maximum 9.9 8.2Error



ture distortions, results show that our proposal constructs
a model equivalent to the physical shape of the measured
object.

Figure 19 shows integrated measurement results.
Camera trajectories in (a) and (b) are mostly the same.
We get many good feature points tracked correctly in
the experimental environment – the room in Fig.15 – be-
cause many room objects had much texture. Even so,
they are not always suitable for measurement. In Fig.19
(a), many measurement points have low-accuracy, but, in
Fig.19 (b), our proposal (Eq.(10) and (11) in Section 3.3)
rejected most low-precision measurement results.

We constructed a 3D environment model of the room
by using measurement results from our proposal (Fig.19
(b)). Figure 20 shows actual environmental images at left
and views of the 3D environment model at right. The
object’s shape is recognizable in an arbitrary view. Al-
though this model is rough due to sparse measurement,
results show that our proposal measures the room shape.

5. CONCLUSIONS

We have proposed calculating camera movement pre-
cisely by selecting good feature points through remov-
ing most outliers and low-accuracy measurement points,
thereby improving camera movement calculation accu-
racy for constructing maps. Applying triangular opti-
mization adapts triangular meshes to physical shape by
detecting texture distortion. The effectiveness of our pro-
posal was demonstrated in experimental results.

To improve measurement accuracy, we plan to calcu-
late camera movement by considering more than three
observation points. For the environment model, we must
use texture mapping that considers omnidirectional im-
age distortion. We should also calculate and recognize
shape edges, planes, and curved surfaces of objects in en-
vironments based on the relationship between measure-
ment data and texture distortion possessed by constructed
models.
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