
Noname manuscript No.
(will be inserted by the editor)

RGB-D SLAM Using Vanishing Point and Door Plate
Information in Corridor Environment

Yonghoon Ji · Atsushi Yamashita · Hajime Asama

Received: date / Accepted: date

Abstract This paper proposes a novel approach to an
RGB-D simultaneous localization and mapping (SLAM)
system that uses the vanishing point and door plates in

a corridor environment simultaneously for navigation.
To increase the stability of the SLAM process in such
an environment, the vanishing point and door plates

are utilized as landmarks for extended Kalman filter-
based SLAM (i.e., EKF SLAM). The vanishing point
is a semi-global unique feature usually observed in the

corridor frontage, and a door plate has strong signa-
ture information (i.e., the room number) for the data
association process. Thus, using these types of reliable

features as landmarks maintains the stability of the
SLAM process. A dense 3D map is represented by an oc-
tree structure that includes room number information,

which can be useful semantic information. The experi-
mental results showed that the proposed scheme yields
a better performance than previous SLAM systems.

Keywords SLAM · RGB-D sensor · Vanishing point ·
Door plate · Mobile robot

1 Introduction

Mapping an unknown environment is a very important
task for a mobile robot in the navigation field and in-

cludes such details as localization and path planning. In
order to build a reliable map, the robot pose should also
be accurately estimated at the same time. Various si-

multaneous localization and mapping (SLAM) schemes
have been proposed to deal with this problem [1]. Ex-
tracting robust features for matching is the key issue
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for estimating the robot pose accurately. Visual-based
SLAM commonly uses low-level features such as corners
or lines [2,3]. However, with low-level features, the data

association process to match features can often fail be-
cause the features are indistinguishable from each other,
which decreases the SLAM accuracy.

In contrast to low-level features, a global feature
that can be used as a unique landmark in an environ-
ment makes it unnecessary to consider the above indis-

tinguishable problem for data association. In addition,
using features with easily recognizable differences elim-
inates ambiguity in the data association process, which

leads to reliable SLAM.

In previous research on using global features, sev-
eral SLAM schemes have been developed that use the

vanishing point as a feature. Bosse et al. used the van-
ishing point extracted from an omni-directional cam-
era image to group parallel line features and applied it

as landmark information for SLAM [4]. Kawanishi et
al. also used the vanishing point to implement struc-
ture from motion (SfM) in a textureless environment

[5]. However, these methods can only be applied with
omni-directional cameras and cannot make use of infor-
mation from other sensors. Furthermore, these methods

cannot build a dense map for mobile robot navigation.

Fig. 1 Data from RGB-D sensor: (a) RGB image, (b) range
image, and (c) point cloud.



2 Yonghoon Ji et al.

Lee et al. used the vanishing point extracted from laser

range data to correct the rotational error of the robot
pose; however, their approach cannot correct transla-
tional errors of the robot pose [6]. Zhang and Suh de-

veloped a SLAM scheme to build a line-based map using
not only the vanishing point but also line features [7].
However, their constructed line-based map does not in-

clude dense information on the environment, and errors
in the data association process are inevitable because
of the indistinguishable line features.

To overcome these disadvantages, we propose a novel
approach for reliable SLAM that uses both the vanish-

ing point and door plates as features. The vanishing
point is used to correct the rotational pose error, and
the door plate is used to reduce the uncertainty of the

translational pose error with respect to the longitudinal
direction of the corridor. Because we can obtain a ro-
bust signature (i.e., the room number information) from

the door plate, it is possible to clearly distinguish be-
tween features. This eliminates the ambiguity between
features, so robust matching can be performed. More-

over, registering recognized room numbers in the map
information allows a semantic map containing spatial
information can be built.

In this study, an RGB-D sensor to easily acquire 3D

information and web camera to recognize door plates
were used to generate a dense 3D semantic map for
mobile robot navigation. To handle the nonlinearities

of the system and estimate the robot state and feature
states, extended Kalman filter-based SLAM (i.e., EKF
SLAM) was applied. The RGB-D sensor can acquire an

RGB image and depth image continuously, as shown in
Fig. 1a , b. Processing these images allows a 3D point
cloud data to be generated, as shown in Fig. 1c.

Figure 2 illustrates the coordinate system adopted
for the experiments in this study: the robot coordinates

{R}, RGB-D sensor coordinates {V } to observe the

Fig. 2 Local coordinate system.

vanishing point, and web camera coordinates {D} to

recognize the door plates.
The remainder of this paper is organized as follows.

Section 2 presents the method for extracting the vanish-

ing point as the global feature, and Sect. 3 presents the
method for recognizing door plates with obvious signa-
ture information. Section 4 describes the EKF SLAM

process for using the vanishing point and door plates
as features. Section 5 describes how a 3D semantic map
that includes both volumetric and feature information

can be built. Section 6 presents the experimental re-
sults from a real environment. Finally, Sect. 7 presents
the conclusions and future work.

2 Vanishing point extraction

A vanishing point is the intersection of projections from

a set of parallel lines in space onto an image plane.
Theoretically, this point exists at an infinite distance
[8]. Several methods have been proposed to extract the

vanishing point from an artificial environment [9]. The
vanishing point can be a very useful feature in a cor-
ridor environment consisting of a long straight passage

because this environment is characterized by converging
to a unique vanishing point. Figure 3 shows the proce-
dure for extracting the vanishing point in a corridor en-

vironment. First, a binary image is generated from the
original image using the Canny edge detection process,
as shown in Fig. 3a, b. Candidate lines that may con-

verge to the vanishing point are then extracted through
the Hough transform, as shown in Fig. 3c. The lines
that do not converge to the vanishing point are elim-

inated using the condition that these lines are almost
perpendicular to the (u, v) axis because of the char-
acteristics of artificial structures. Finally, the unique

vanishing point can be extracted by calculating the in-
tersection of lines that are not eliminated. The equation
of these lines is given by

aiu+ biv = ci, (1)

where i = 1, 2, · · · ,M and M is the number of the lines.

(ai, bi, ci) are coefficients of each equation of the lines.
(u, v) represent the image coordinates. By substituting
the coefficients into Eq. (1), the form of the matrix vec-

tor equation can be defined as follows:

Au = c, (2)
a1 b1
a2 b2
...

...

aM bM


[
u
v

]
=


c1
c2
...

cM

 . (3)

Here, the estimated vanishing point û = (û, v̂) is cal-

culated with the least square methods using a Penrose
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Fig. 3 Procedure for line-based vanishing point extraction.

pseudo-inverse matrix as follows:

û = A†c, (4)

where A† = (ATA)−1AT. As shown in Fig. 3e, the

unique vanishing point for the landmark is extracted
with the above method.

3 Door plates recognition

Because door plates can frequently be observed in a cor-
ridor environment, they can provide very useful feature
information. Reliable SLAM requires a data association

process that tracks the same landmarks during a robot’s
navigation. If we use accurately recognized door plates
as landmarks, the data association process is greatly

simplified because clear room number information is
obtained. In particular, these features can handle trans-
lational pose errors that cannot be corrected when only

the vanishing point is used as a feature. This section
describes the method for door plate recognition.

The room number information on a door plate is
recognized by using an optical character recognition
(OCR)-based method using a support vector machine

(SVM) and artificial neural network (ANN) [10]. This
process is divided into two steps: SVM-based plate de-
tection and ANN-based plate recognition.

A sufficient number of training samples is required
to ensure reliable SLAM because a pre-training process

is needed where the recognition rate strongly depends
on the samples. The plate detection step involves de-
tecting candidate image patches corresponding to the

room number using image data from the camera mounted
on a robot. The plate recognition step involves recog-
nizing the image of the room number as a numeral.

3.1 Plate detection

The plate detection step involves detecting all candi-
date parts that correspond to the door plate in the

input image. This task is also divided into two steps:

segmentation and classification. During segmentation,
an input image is divided into multiple segments to

make feature extraction easier. First, we apply a Sobel
filter and threshold filter in sequence to find vertical
edges on the input image, as shown in Fig. 4b. This is

because one important characteristic of door plate seg-
mentation is the high number of vertical edges in let-
ters. Second, applying a close morphology filter helps

fill the black spaces between each vertical edge line and
connect all regions with a high number of edges. After
these processes are applied, regions in the image that

may contain the room number information can be de-
tected, as shown in Fig. 4c. Finally, a predefined aspect
ratio (i.e., region width divided by region height) is ap-

plied to remove the improper regions, and candidate
image patches are detected, as shown in Fig. 4d.

The classification step determines whether or not

each candidate patch has the room number informa-
tion with the SVM, which is a widely used supervised
machine learning algorithm for binary classification and

has a relatively small number of parameters. Fig. 5a, b

Fig. 4 Plate detection process: (a) original image, (b) af-
ter Sobel filter application, (c) after morphology closing filter
application, and (d) detected candidate plates (rectangular
blocks).
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Fig. 5 Plate detection process: (a) training samples (s(x) >
0, label = 1), (b) training samples (s(x) < 0, label = −1), and
(c) learned SVM (support vector machine).

Fig. 6 Preprocessing for number recognition: (a) original im-
age patch, (b) binary image patch, and (c) segmented objects
(rectangular blocks).

show the labeled training samples that include and do

not include the room number information. The linear
SVM determines the hyperplane parameters w and b
that are used to classify the data:

s(x) = wTx+ b = 0, (5)

y = sgn(f(x)), (6)

where x = [x1, · · · , xk]
T,w = [w1, · · · , wk]

T and k rep-

resents the total number of pixels for each image patch.
x is a feature vector that describes all of the pixels of
the image patch. After the training of the SVM is com-

pleted, the image patches corresponding to the room
number can clearly be distinguished in the feature space
from all candidate image patches, as shown in Fig. 5c.

Therefore, the labels of new input image patches are
determined through the sign function in Eq. (6), and
only image patches of the room number are detected.

3.2 Plate recognition

In the plate recognition step, OCR is used to determine
the numeral from the image patches corresponding to

the room number. An accurately recognized room num-
ber can act as a strong signature for the data associ-
ation process in EKF SLAM. First, a binary image is

generated through a threshold filter for pre-processing,
as shown in Fig. 6b. Second, a contour detection algo-
rithm is performed, and each number information ob-

ject is segmented as shown in Fig. 6c. After the pre-

processing, each segmented number is separately rec-

ognized as 0–9 s through an ANN, which is another su-
pervised machine learning algorithm. Figure 7a shows
the training samples for ANN training. To train the

ANN as shown in Fig. 7c, we use the features of hori-
zontal and vertical accumulation histograms, as shown
in Fig. 7b.

After the ANN is trained, all weight parameters of
each layer are determined; therefore, if a new number

object is an input, the corresponding number informa-
tion object among 0–9 s can be recognized. In addition,
a probability value (i.e., value similarity between his-

tograms as shown in Fig. 7b) can be obtained for each
digit, which can be used for the recognition score to de-
termine the reliability. Figure 8 shows the final recogni-

tion results. If valid recognition is performed, the recog-
nition score should be very close to 1.0. On the other
hand, a recognition score from false recognition should

be low (e.g., 0.7 or less). These false recognition results
would not be registered as landmarks for SLAM. Be-

Fig. 7 Number recognition process: (a) training samples, (b)
histogram features, and (c) ANN (artificial neural network).

Fig. 8 Recognized door plates: (a) correct recognition re-
sult (recognition scores: (0.9787, 0.9804, 0.9581) and (0.8518,
0.9804, 0.9425)) and (b) incorrect recognition result (recog-
nition scores: (0.9682, 0.9856, 0.6180)).
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Fig. 9 Overview of proposed EKF SLAM using vanishing point (VP) and door plates (DPs).

cause the unique value of a room number with a high

recognition score can be used to clearly detect the loca-
tion of each room, it can be used for robust signatures.

4 EKF SLAM process

Figure 9 shows a flowchart of the overall proposed SLAM

process. The robot pose and landmark positions are es-
timated by EKF SLAM to handle nonlinearities related
to odometry and measurement data (i.e., the vanishing

point and door plates). An octree-based dense 3D map
(i.e., location-based map) is built from the 3D point
cloud data, and a feature-based map is generated from

the estimated positions of the landmarks. Finally, a
dense 3D semantic map is constructed by combining
the information of both maps. Further details are given

in Sect. 5.
The EKF SLAM procedure consists of the predic-

tion and update steps. The control input data for odom-

etry are used to define a motion model at the prediction
step. The vanishing point and door plate information
are used to define a measurement model in the update

step. The state vector x and corresponding covariance
matrix P in EKF SLAM are defined as follows:

x =
[
(xr)

T (lv)
T (ld(1:n))

T
]T

, (7)

xr =
[
xr yr ϕr

]T
, (8)

lv =
[
xv yv

]T
, (9)

ld(1:n) =
[
(ld1)

T (ld2)
T · · · (ldi)T · · · (ldn)T

]T
, (10)

ldi =
[
xdi ydi sdi

]T
, (11)

P =

 Φ Ψ r,v Ψ r,d(1:n)

(Ψ r,v)
T Θv Θv,d(1:n)

(Ψ r,d(1:n))
T (Θv,d(1:n))

T Θd(1:n)

 , (12)

where xr is the robot pose and lv, ldi are the positions
of the vanishing point and the ith door plate with a

room number signature at time t, respectively, as shown

Fig. 10 State variables for EKF SLAM.

in Fig. 10. Here, the subscript t representing the current
state is omitted. The vanishing point feature represents

a unique global landmark, while the door plate features
do not. The diagonal elements Φ, Θv, and Θd(1:n) are
covariance matrices corresponding to the states of the

robot pose, vanishing point, and door plates, respec-
tively. The off-diagonal elements Ψ r,v, Ψ r,d(1:n), and
Θv,d(1:n) are the cross-correlation matrices of Φ, Θv,

and Θd(1:n). The state vector and covariance matrix
are estimated in the prediction and update steps.

A more detailed EKF SLAM procedure is as fol-
lows. First, the system state x is predicted based on

the control input in the prediction step. Then, the data
association process is performed based on the measure-
ment data. If the data association processes succeed,

the whole system state x is updated in the update step.
If the data association process fails, the whole system
state x is augmented. Further details are given in this

section.
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4.1 Prediction

In the prediction step of EKF SLAM, a motion model is
defined to predict the state vector x− and correspond-

ing covariance P− using the control input u = (sl, sr)
at the time t as follows:

x
− = f(xt−1,u)

= xt−1 +


sr+sl

2 cos(ϕr,t−1 +
sr−sl
2B )

sr+sl
2 sin(ϕr,t−1 +

sr−sl
2B )

sr−sl
B

0N×1

 , (13)

P− = FP t−1F
T +GQGT , (14)

F =

[
F 03×N

0N×3 IN

]
, (15)

G =

[
G

0N×3

]
, (16)

Q =

[
k|sr| 0
0 k|sl|

]
, (17)

where f(·) is the motion model of the system. This is
defined by assuming a two-wheeled differential robot.

N = 3n+2 is the size of elements consisting of landmark
states in the state vector x. B denotes the distance be-
tween the wheels. Q is the process noise matrix, and

its elements consist of values that are proportional to
the distances by the right wheel sl and left wheel sr of
the control input. F = ∂f/∂xr,t−1 and G = ∂f/∂u

are Jacobian matrices of the nonlinear function f(·)
with respect to the robot state vector and control in-
put, respectively. Note that the landmark state vectors
are not affected by the control input because the van-

ishing point and door plates are considered to be fixed
landmarks in the environment. The superscript“ -”
indicates the predicted state before the measurement

data at the time t are taken.

4.2 Data association

When a feature (e.g., vanishing point or door plate)
is extracted, the data association process is needed to

check whether it is a newly observed landmark or has
already been registered. To perform this process, the
measurement model h(·) based on the predicted state

vector represents the relationship between the global
frame and sensor frame. This model is defined as fol-
lows:

rẑi = h(x−
r , l

−
i ), (18)

where rẑi is the predicted measurement data of the ith

landmark l −
i in the sensor frame at the time t from the

predicted state vector x−
r . The measurement models for

the vanishing point and door plates given in Sect. 2, 3

are defined as follows:

r ẑv = hv(x
−
r , l

−
v )

=
fv
{
(x−

v − x−
r ) sinϕ

−
r − (y−v − y−r ) cosϕ

−
r

}√
(x−

v − x−
r )2 + (y−v − y−r )2

, (19)

rẑdi =

[
ûdi

ŝdi

]
= hd(x

−
r , l

−
di )

=

 fd

{
(x−

r −x−
di) cosϕ

−
r −(y−

r −y−
di) sinϕ−

r

}
√

(x−
di−x−

r )2+(y−
di−y−

r )2

s−di

 . (20)

Here, Eq. (19) is the measurement model for the van-
ishing point extracted from the image from the RGB-D
sensor. It plays an important role in correcting the ro-

tational error of the robot pose because the vanishing
point is observed almost continuously in the corridor
environment. l −

v = (x−
v , y

−
v ) denotes the state vector

of the vanishing point, which has already been regis-
tered as a unique landmark. We assumed that a point
at the finite distance for which the vanishing point is

projected on a virtual plane is defined as the state of
the landmark, as shown in Fig. 10. We assumed this
because it is difficult to define a measured value as in-

finity. Equation (19) is the approximation model based
on the assumption that the robot navigates along the
corridor axis. The error of this measurement model can

be ignored under the assumption that the distance be-
tween the robot and virtual plane is sufficiently large.
This approximation model is valid because the robot

moving along the corridor axis assigns the same mean-
ing to observing the vanishing point. For these assump-
tions, we can consider the vanishing point as a global

landmark fixed in space.
Equation (20) is the measurement model for the

door plates extracted from the image from the camera

mounted in the lateral direction. s−di denotes a signa-
ture that characterizes a landmark type. In this paper,
we define the signature as an integer value of the rec-

ognized room number. Here, it is possible to greatly
reduce the data association error by processing reliable
measurement data. This can only occur if the recogni-

tion scores for all digits are above the threshold.
fv and fd are the focal lengths of the RGB-D sen-

sor and web camera, respectively. Figure 11a illustrates

the image planes; these include the measured rzv corre-
sponding to the vanishing point and rzd corresponding
to the door plate. r ẑv represents the predicted measured

value of the vanishing point based on the robot state
vector x−

r at the time t. It is defined as the pixel coor-
dinate with respect to the u axis, as shown in Fig. 11b.
rẑdi also represents the predicted measured value of the
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Fig. 11 Observation models for EKF SLAM: (a) local co-
ordinate system, (b) image planes, (c) observation model of
vanishing point, and (d) observation model of door plates.

door plate based on the robot state vector. It is also de-
fined in the same manner as the vanishing point, and

the integer value of the room number signature is added
as shown in Fig. 11c.

As noted in the introduction, because the measured
value r ẑv is a unique landmark, it is not included in the

data association process. Hence, state augmentation is
performed only when a vanishing point is observed for
the first time, and subsequent observations are always

used for the state update process. On the other hand,
for the measurements of the door plates, the simplified
data association process is always performed using only

the signature sdi, as given in Table 1. If the matching
landmark ldi with the measured rzd exists (i.e., the
data association succeeds) based on the algorithm given

in Table 1, the whole system state is updated. On the
other hand, if there is no matching landmark ldi after all
landmarks are searched (i.e., the data association fails),

the whole system state is augmented. Therefore, the
data association process can simply be conducted by
only checking the room number information of the door

plates. Note that we only use recognition results with
a high recognition score as measurement data; thus, it
is possible to greatly reduce the matching error more

than with a Mahalonobis distance-based method.

4.3 Update

In case of the data association success, the predicted
state vector x and the corresponding covariance P at

time t are updated from the measured rzd as follow:

K = P−
H

T (HP−
H

T +R)−1, (21)

x = x− +K(zd − ẑdi), (22)

P = (IN+3 −KH)P−, (23)

H =
[
Hr 02×3(i−1) Hi 02×3(n−i)

]
(24)

R =

[
σ2
u 0
0 0

]
, (25)

where K represents the Kalman gain. Hr = ∂hd/∂x
−
r

and Hi = ∂hd/∂ldi are the Jacobian matrices of the
measurement models with respect to the robot state

vector and landmark state vector, respectively. R de-
notes the measurement noise matrix. Here, the mea-
surement of the room number information is clear, and

it cannot affect the correction of the state vector. Thus,
the corresponding noise element of R (i.e., the entry in
the second row and second column of the matrix R)

should be 0. Equations (21)–(23) represent the update
process using the door plate information. The state up-
date process using the vanishing point is also performed

in the same manner based on the measured rzv and its
model hv(·).

4.4 State augmentation

If the data association fails, the state vector and the
corresponding covariance at the time t are augmented
with the first measurement. The augmented state vec-

tor x+ and its covariance matrix P+ are given by

x
+ =

[
xT (la)

T
]T

, (26)

P+ =

 Φ Ψ ΦT (Ar)
T

ΨT Θ ΨT (Ar)
T

ArΦ ArΨ ArΦ(Ar)
T +AaR(Aa)

T

 , (27)

where Ar and Aa are the Jacobian matrices of the reg-

istered landmarks with respect to the robot state vector
and measurement data. The new covariance matrix for
the new landmark is thus augmented with all of the un-

certainty factors considered (i.e., the covariance of the
robot state Φ and the measurement noise R).

Table 1 Algorithm of simplified data association process.

1: Data association for door plates landmarks (rzd) :
2: for every registered landmark ldi
3: if sd of rzd = sdi of ldi
4: measured rzd is matched to ith landmark ldi
5: end if
6: end for
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5 3D semantic map building

The estimated landmark states of the door plates can

be useful semantic information in that they consist of
absolute position values and the room number values.
Therefore, these landmark states can be directly used

for a feature-based map, as shown in Fig. 12d. This
semantic information makes it possible to reduce the
speed of the robot near the door when there is a risk

of collision. Moreover, a goal position can easily be as-
signed using not specific coordinate information but the
room number information. Using only the feature-based

map, however, makes mobile robot navigation impossi-
ble. For these reasons, a location-based map that rep-
resents the volumetric information was built and com-

bined with the feature-based map in this study. Several
ways to represent a 3D environment model have been
developed [11–13]. Among them, the OctoMap library,

which is based on the probabilistic update of the 3D
point cloud, was utilized to build a dense 3D map [13,
14]. The data structure of the OctoMap is based on

an octree structure that is very efficient for memory
management. However, if we use all of the points from
the RGB-D sensor, as shown in Fig. 12a, the compu-

tational burden would be very high because 307,200

Fig. 12 3D semantic mapping: (a) original point cloud (size:
about 300,000 points), (b) after voxel grid filter is applied
(size: about 20,000 points), (c) location-based map for vol-
umetric information (OctoMap), and (d) feature-based map
for semantic information.

Fig. 13 Experimental setup: (a) whole system, (b) RGB-D
sensor (ASUS Xtion Live Pro), and (c) web camera.

points would be considered in every frame of an im-
age with a resolution of 640 × 480 pixels. To remedy

this problem, a voxel grid filter is applied to reduce
the number of points, as shown in Fig. 12b. Thus, the
computational burden of the OctoMap building process

using a 3D point cloud is effectively reduced. Figure 12c
indicates the results of the built OctoMap.

6 Experimental results

In order to verify the proposed SLAM scheme, vari-

ous experiments were conducted using a Pioneer 3-DX
(MobileRobots) mobile robot equipped with an RGB-
D sensor (ASUS Xtion Live Pro) and web camera, as

shown in Fig. 13. The RGB-D sensor was mounted in
the frontal direction; it was used to extract the vanish-
ing point and build the location-based map (i.e., Oc-

toMap). The web camera mounted in the lateral direc-
tion was used to recognize the door plates and build
the feature-based map. The camera calibration task

was done before the experiments. The average speed
of the robot was 0.34 m/s, and a laptop computer with
a 2.8 GHz quad core CPU was used to execute the pro-

posed SLAMmethod. The acquisition period of the sen-
sor data was 300 ms. The robot navigated toward the
end of the corridor and came back to the starting point,

as shown in Fig. 14a. Figures 14b, c illustrate the 3D
semantic map, including both the feature-based map
and location-based map, constructed with our proposed

method.

To verify the effectiveness of the proposed method,

comparative experiments were conducted. We conducted
experiments under the same conditions using three dif-
ferent methods: odometry, a conventional corner-based

EKF SLAM scheme using Harris corners, and the pro-
posed EKF SLAM scheme using the vanishing point
and door plates. The estimated trajectories and posi-

tion errors are illustrated in Fig. 15a, b, respectively.
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Fig. 14 SLAM results: (a) real corridor environment and (b), (c) 3D semantic map, including feature-based map and location-
based map.

The red dotted line, light solid line, and dark solid
line represent the results with odometry, corner feature-
based SLAM, and proposed SLAM, respectively. The

odometry showed the largest error, even though the
robot navigated along a linear path. For corner feature-
based SLAM, the position error could not converge

to close to 0 because of the indistinguishable features.
The proposed method produced the most accurate es-
timated trajectory and smallest error.

Figure 16 represents the relationship between the
number of features used as landmarks and the compu-
tation times of EKF SLAM for each frame. The con-

ventional SLAM scheme, which used corner features,
exploited 612 corners during the round-trip navigation
in a corridor with a distance of 55 m; thus, it could not

handle real-time processing, and the computation time
rapidly increased after about 100 landmarks were regis-
tered. On the other hand, the proposed SLAM scheme

used only one vanishing point and 14 door plates (i.e.,
15 total) as landmarks; therefore, matching process was
very fast compared to the conventional SLAM scheme.

In conclusion, the corner feature-based SLAM reg-
istered a very large number of features as landmarks;
thus, the computational load was significantly increased

in proportion to the square with EKF SLAM. Further-
more, the accuracy of SLAM was not reliable. On the
other hand, the proposed method built accurate map

closely matching the real environment despite using a
much smaller number of features as landmarks. The
proposed method significantly reduced the computa-

tional burden.

7 Conclusion

This paper proposes a reliable SLAM scheme for a cor-
ridor environment that uses a vanishing point and door

plates on the assumption that the robot navigate by
the longitudinal direction of the corridor. The proposed
approach was validated in several experiments, and the

following conclusions were drawn:

– By using a vanishing point as a unique global land-
mark, the rotational error of the robot pose can be

corrected robustly because the vanishing point can
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Fig. 15 Comparison of (a) estimated trajectories and (b)
translation errors.

Fig. 16 Comparison of computational time.

be observed almost continuously in a corridor envi-
ronment.

– A door plate with room number information can
serve as a very obvious signature; therefore, by using
it as the landmark, the data association process in

EKF SLAM can be simplified, and the translational
error of the robot pose can be corrected robustly.

– A dense 3D semantic map can be constructed by

combining the location-based map from the 3D point
cloud and feature-based map representing the room
number information.

– By combining the two above features, reliable SLAM
can be performed for a corridor environment.

Future work will involve developing novel features
with new measurement models for several types of se-
mantic information that contain more useful meanings.

A semantic map with a variety of information other
than the door plate information would be beneficial to
various tasks performed by the robot in this environ-

ment.
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