遠隔操縦建機のための 屋外環境における遮蔽物透視システム*

長野 樹**藤井浩光***橘高達也[†] 淵田正隆^{††} 深瀬勇太郎^{†††}青木 滋^{†††}鳴海智博^{†††}山下 淳^{††} 淺間 一^{††}

See-through System Using LiDAR for Tele-operated Construction Machines

Tatsuki NAGANO, Hiromitsu FUJII, Tatsuya KITTAKA, Masataka FUCHIDA, Yutaro FUKASE, Shigeru AOKI, Tomohiro NARUMI, Atsushi YAMASHITA and Hajime ASAMA

Demand for teleoperation of construction machines at disaster sites is increasing to prevent the secondary disasters. In teleoperation, operaters can see the environment using cameras mounted on the construction machines. However, there is a problem that the camera images have blind spots occluded by obstacles such as the arm of the construction machine itself, which cause a decrease of work efficiency. This paper presents a method to generate images with few blind spots by seeing through foreground obstacles and visualizing background objects. The proposed method uses two RGB cameras and LiDAR to acquire texture data with the three-dimensional information of the environment. And then, it projects the background image acquired by one camera to the other camera by using the three-dimensional information, and integrates the two camera images into a see-through image. In the experiment with an actual construction machine, we succeeded in generating see-through images in real time.

Key words: diminished reality, teleoperation, construction machine, LiDAR, outdoor environment, texture mapping

1. 序 論

地震や火山噴火などの災害現場では,作業員の安全を確保 し,二次災害の発生を避けることを目的として,無人の建機を 遠隔操作することによる災害対応に期待が高まっている¹⁾.

遠隔操作では、オペレータは建機に搭載したカメラの映像を 確認しながら作業を行うことが一般的である.その際、カメラ 映像の視野の狭さや死角の存在による作業効率の低下が問題と なっている²⁾.その解決方法として、カメラを複数搭載して、 様々な視点からの映像を提示することで広い視野を確保するこ とが一般に行われてきた³⁾.しかし、遠隔作業中のオペレータ は、複数のモニタを提示した場合にも特定のモニタのみを注視 していることが指摘されている²⁾.その上、複数のモニタを見 比べながら作業をすることは、オペレータへの負担につながる という問題もある⁴⁾.したがって、作業効率を向上させるため には、視野が広く死角の少ない1つの映像を提示することが有 効であると考えられる.

災害現場における建機の重要な作業の1つとして、本研究で は図1のようなアームを有する建機を用いた屋外でのガレキ の撤去作業に焦点を当てる.建機の手先には図2(a)に示すよ うなニブラと呼ばれる作業用のアタッチメントが取り付けられ ており、ニブラを開閉することでガレキの把持・破断を行う. そのため、遠隔操作で効率よく作業を行うには、ニブラの開閉

** 学生会員 東京大学大学院 (東京都文京区本郷 7-3-1)

Fig. 1 A construction machine with arm

(a) A nibbler

(b) The view from the camera mounted on the arm

Fig. 2 The problem in tele-operation of construction machines

状態に加えてその周囲の環境を把握可能な映像提示が必要であ る.従来の映像提示では、図 2(b) で示すようなニブラを見下ろ す位置に設置したカメラからの映像が使われてきた.しかしこ の映像では、広い範囲でニブラによる死角が生じており、その 裏側(以下,背景と呼ぶ)の状況を把握することが不可能であ る.このような状況では把持対象全体を確認できないため、細

^{*} 原稿受付 平成 30 年 5 月 17 日

掲載決定 平成 30 年 7 月 13 日

^{***} 千葉工業大学(千葉県習志野市津田沼 2-17-1) †安川電機(福岡県北九州市八幡西区黒崎城石 2-1)

^{††} 正 会 員 東京大学大学院

^{***} 清水建設(東京都中央区京橋 2-16-1)

長いガレキの先端など不安定な部分を掴んでしまうことや背景 に存在する障害物に衝突する危険が生じる.したがって,1つ の映像上でニブラ本体とその背景を同時に視認可能なことが必 要である.

映像中の死角の問題に対して,本研究では遮蔽物を透視した ような映像(以下,透視映像と呼ぶ)を生成する手法に着目す る.透視映像は遮蔽物がある領域に,その背景の映像を重畳す ることで生成される.背景の情報を取得する手法として,事前 に環境をセンシングしておく手法⁵¹⁶や周囲の画素情報から推 定する手法⁷¹⁸が提案されている.しかし,遠隔操作で使用す るためには,未知環境においても実際の背景の状況をオンライ ンで取得・提示することが必要不可欠であるため,これらの手 法は適用できない.

また, Enomoto らは, 背景が2次元平面であると仮定した手 法を提案している⁹⁾¹⁰⁾. この手法では, 別視点のカメラから得 た背景映像を平面射影変換によって視点を変換して合成するこ とで透視映像生成している.しかし, ガレキなどが散在する災 害現場を2次元平面に近似することは困難であり, この手法は 適用できない.

背景をオンラインで,かつ3次元的に取得する手法として, 著者らは複数の RGB-D センサを用いた手法を提案している ¹¹⁾¹²⁾. RGB-D センサは,カメラの映像に加えて画素ごとに深 度情報を取得可能なセンサである.環境を色情報付きの3次元 点群として取得することで,映像の任意視点への変換が可能と なる.それによって,複数視点からの映像を1つの視点に投 影・合成することで透視映像を生成している.しかし,一般的 に実用化されている RGB-D センサの多くは,赤外光を使用し て測距を行っている.そのため,太陽光の影響が大きい屋外環 境では,赤外光の読み取りが困難で正確な測距ができず,屋内 での使用に限定された手法である.

一般に、屋外での測距手段として LiDAR (Lighting Detection and Ranging) と呼ばれる、レーザ光を用いた Time of Flight 方 式のセンサが用いられている.本研究では、LiDAR で得られ る3次元情報を用いて複数台のカメラ映像を統合することに よって、未知の屋外環境においてオンラインで透視映像を生成 することを目的とする.

2. アプローチ

2.1 要求仕様

第1章での議論から提案手法が満たすべき要求仕様を以下の ようにまとめる.

- •1つの映像上で遮蔽物とその背景を同時に視認可能なこと
- 屋外環境で適用可能なこと
- オンラインで映像提示可能なこと
- 背景映像を正確な位置に提示可能なこと

ガレキの撤去作業では、1つの映像上でニブラとその背景を 視認できることが重要であり、本研究では、透視映像の生成に よってこの問題の解決を図る.また、従来研究では考慮されて いなかった、屋外環境への適用を想定している.加えて、遠隔 操作での使用を想定しているため映像のオンライン性が不可欠 である.本研究においてオンラインであるとは、センサから送 られてきた情報を即座に処理して遅延なく映像を提示すること である.佐藤ら¹³⁾による建機の遠隔操縦の熟練オペレータに 対する調査では、9 fps での映像提示で十分使用に耐え得るこ

Fig. 4 The flow of the proposed method

とが示されている.そこで本研究では,映像のフレームレート として9 fps を要求仕様に設定する.最後に,背景の映像を正 しい位置に提示することも重要である.ガレキを正確に把持す るためには,提示する背景映像と実際の背景との位置ずれが建 機のニブラのサイズと比較して十分小さいことが求められる. また,ニブラが離れたところから把持対象にアプローチする過 程において,常に設定した要求精度を満たす必要がある.定量 的には,4.1 節において提案システムを搭載する建機を明確に したのちに,その操作特性を踏まえて適切に設定する.

2.2 システムの構成

図3に提案システムの構成を示す.システムは,建機のアームに取り付けた2台のカメラとLiDARからなる.ニブラを見下ろす位置に取り付けられたカメラ(以下,メインカメラと呼ぶ)がオペレータの視点となるカメラであり,この映像中のニブラによる死角を問題として取り上げる.そして,メインカメラからは見えない背景の映像と3次元情報を取得するために,アームを挟んで反対側にカメラ(以下,サブカメラと呼ぶ)とLiDARを設置する.また,各センサは遠隔操縦中に相対的な位置姿勢関係が変化しないようにすべて同じリンクに固定する.

2.3 提案手法の流れ

以下に提案手法の流れを示す(図4).i)は事前に行われ,ii) ~iv)がオンラインでの処理となる.

- i) 各センサ間の相対的な位置姿勢関係を求める.
- ii) LiDAR で得られる点群からメッシュを生成し、背景の3
 次元復元を行う.
- iii) 生成したメッシュにサブカメラ映像から対応するテクス チャをマッピングする.
- iv) テクスチャ付きメッシュを座標変換によってメインカメラ に投影,メインカメラ映像と合成する.

まず、カメラの映像とLiDAR の3次元情報を統合するため

に, 事前のキャリブレーションによってセンサ間の相対的な位 置姿勢関係を求める.これによって, LiDAR で得られた点群 の,2台のカメラ画像座標系において対応する座標を知ること が可能となる.

ここで、本研究で使用する LiDAR では、前述の RGB-D セ ンサと比べると取得できる 3 次元点群の密度が疎になるとい う問題がある. LiDAR は、照射角が異なる複数本のレーザ光 を 360 deg 回転させ、その反射時間を計測することで測距を広 範囲に行っている. LiDAR による測距はレーザ光の走査線上 のみ可能であり、照射されるレーザ光の本数も限られているた め、スキャン方向に垂直な方向に対しては環境を粗くしかセン シングできず、疎な 3 次元情報しか得られない.

この問題を解決するために、本研究では点群のメッシュ化に よってレーザ間の3次元情報を補間する.そして、生成した メッシュにサブカメラから得られるテクスチャ情報を付与し、 それをメインカメラ映像に投影、合成することで遮蔽物を透視 したような映像を生成する.上記のii)~iv)を高速に処理する ことによってオンラインでの映像生成を可能にする.

3. 提案手法

3.1 座標系の定義

本章で使用する座標系の定義について述べる. ある点 P を,環境中の任意の場所に設置したワールド座標系 Σ_W に おいて ^W $\boldsymbol{p} = [x_w, y_w, z_w]^\top$ と表す. 同様に,カメラ座標系 Σ_C , LiDAR 座標系 Σ_F における表現を ^C $\boldsymbol{p} = [x_c, y_c, z_c]^\top$, ^F $\boldsymbol{p} = [x_f, y_f, z_f]^\top$ とする. そして, Σ_W から Σ_C への座標系 の変換を 3 行 3 列の回転行列 ^C \mathbf{R}_W と 3 次元の並進ベクトル ^C \boldsymbol{t}_W を用いて以下の式のように定義する.

$${}^{\mathrm{C}}\boldsymbol{p} = {}^{\mathrm{C}}\boldsymbol{\mathrm{R}}_{\mathrm{W}}{}^{\mathrm{W}}\boldsymbol{p} + {}^{\mathrm{C}}\boldsymbol{t}_{\mathrm{W}}.$$
 (1)

同様に, $\Sigma_{\rm C}$ から $\Sigma_{\rm F}$ への変換は ${}^{\rm F}\mathbf{R}_{\rm C}$ と ${}^{\rm F}t_{\rm C}$ を用いて表される. さらに, ${}^{\rm C}p$ を画像上に投影したときの同次座標をカメラ画像座標系 $\Sigma_{\rm M}$ で ${}^{\rm M}p = [u, v, 1]^{\top}$ と表し,カメラの内部パラメータ **A** によって次の式で表現できる.

$${}^{\mathrm{M}}\boldsymbol{p}\simeq\mathbf{A}^{\mathrm{C}}\boldsymbol{p},\tag{2}$$

ここでは、 ≃ は定数倍の不定性を表すものとする.

3.2 カメラと LiDAR のキャリブレーション

本節では、Zhang ら^{14) 15)} が提案したカメラと LiDAR のキャ リブレーション手法について述べ、両者の位置姿勢関係を表す 回転行列 $^{\rm F}\mathbf{R}_{\rm C}$ と並進ベクトル $^{\rm F}\mathbf{t}_{\rm C}$ を求めることを目的とす る. この手法では、図 5 のように大きさが既知の 2 色の四角形 のパターンが交互に並んだチェッカーボードを利用し、カメラ と LiDAR が同時にチェッカーボードを観測している必要があ る. まず、Zhang ら¹⁶⁾ のキャリブレーション手法を用いてカメ ラの内部パラメータ A と $\Sigma_{\rm W}$ から $\Sigma_{\rm C}$ への変換 $^{\rm C}\mathbf{R}_{\rm W}$, $^{\rm C}\mathbf{t}_{\rm W}$ を求める. ここでは、ワールド座標系 $\Sigma_{\rm W}$ をチェッカーボード の平面が $z_w = 0$ となるように設定する. この時、カメラの光 学中心からチェッカーボードに下した垂線のベクトル \mathbf{n} をカ メラ座標系 $\Sigma_{\rm C}$ で次の式 (3) を用いて求めることができる.

$$\boldsymbol{n} = -\boldsymbol{r}_3(\boldsymbol{r}_3 \cdot {}^{\mathrm{C}}\boldsymbol{t}_{\mathrm{W}}), \qquad (3)$$

 r_3 は回転行列 ${}^{C}\mathbf{R}_{W}$ の第3列目を表す.nの大きさ ||n||は チェッカーボードからカメラまでの距離に等しい.

Fig. 5 Camera-LiDAR calibration

また、LiDAR によって得られるチェッカーボード上の点 P のカメラ座標系 $\Sigma_{\rm C}$ 、LiDAR 座標系 $\Sigma_{\rm F}$ での座標 ${}^{\rm C}p$ と ${}^{\rm F}p$ に は、式 (4) のような関係が成り立つ.

$${}^{\mathrm{F}}\boldsymbol{p} = {}^{\mathrm{F}}\mathbf{R}_{\mathrm{C}}{}^{\mathrm{C}}\boldsymbol{p} + {}^{\mathrm{F}}\boldsymbol{t}_{\mathrm{C}}, \qquad (4)$$

^Fpは LiDAR がチェッカーボード上に照射した複数本のレー ザ光のうち,回転軸に垂直なレーザ光で取得した点である.^Fpは Kassir ら¹⁵⁾による手法によって全点群の中から検出する. また,点 P はチェッカーボード上の点であることから^Cp と nについて次の式のように表せる.

$$\boldsymbol{n} \cdot {}^{\mathrm{C}}\boldsymbol{p} = \|\boldsymbol{n}\|^2.$$
 (5)

さらに,式(5)に式(4)を代入すると,次の式(6)を導くことができる.

$$\boldsymbol{n} \cdot ({}^{\mathrm{F}} \mathbf{R}_{\mathrm{C}}^{-1} ({}^{\mathrm{F}} \boldsymbol{p} - {}^{\mathrm{F}} \boldsymbol{t}_{\mathrm{C}})) = \|\boldsymbol{n}\|^{2}.$$
(6)

^F**p**,**n**は既知であるので,式(6)は^F**R**_C,^F**t**_Cに関する1 つの方程式になる.求めたい未知数^F**R**_C,^F**t**_Cは位置姿勢の 6自由度であり,1つの^F**p**と**n**の組み合わせで1つの拘束 条件を与える.したがって,最低6つの組があればすべての 未知数を求めることが可能である.チェッカーボードを様々 な位置に動かし,多数の^F**p**と**n**のデータの組を得ることで, Levenberg-Marquardt法¹⁷⁾による最適化計算により^F**R**_Cと ^F**t**_Cを推定する.

3.3 メッシュの生成

2.3 節で示したように LiDAR で得られる点群の密度は疎で あり,環境の3次元情報を十分に取得できない.そのため本研 究では,点群から近傍の3点を選び出し,三角メッシュを生 成することによる補間手法を提案する.メッシュの生成手法と しては,全点群の中から近傍点を探索する手法¹⁸⁾などが代表 的である.しかし点群の数が多い場合,計算量が膨大となるた め,オンラインでの処理は困難になる.そこで,LiDAR で得 られる点群がレーザ光の走査線上に分かれて並んでいることを 利用し,隣り合う2本のレーザからそれぞれ近傍点を選ぶこと で高速にメッシュを生成する手法を提案する.

具体的な手法について説明する.まず,図6に示すように 物体に照射されたレーザ光の走査線を端から順番にレーザ $L_1, L_2, \cdots, L_j, \cdots$ と呼ぶこととする.また,レーザ L_j 上で取得 した点群の適当な点を基準として $P_{(1,j)}, P_{(2,j)}, \cdots, P_{(i,j)}, \cdots$ の ように定める. $P_{(1,j)}, P_{(2,j)}, \cdots, P_{(i,j)}, \cdots$ は同じレーザ光によっ

Fig. 6 Proposed mesh generation method The distance between

Fig. 7 An example when mesh is not generated

て取得されたため、LiDAR 座標系の原点から見た仰角が等しく お互いに隣り合う点である. さらに $P_{(i,1)}, P_{(i,2)}, \cdots, P_{(i,j)}, \cdots$ の方位角が等しくなるように定義すると、 $P_{(i,j)} \ge P_{(i,j+1)}$ は 同じレーザ光で取得した点以外では最も近傍にあると仮定でき る. 提案手法では、以下の処理を 2 本のレーザ $L_j \ge L_{j+1}$ で 行うことで、そのレーザ間を埋め尽くすようにメッシュを生成 する. また、その処理の様子を図 6 に示す.

- i) 2本のレーザ光からそれぞれ P_(i,j), P_(i,j+1) を選び,これ らを基準点とする.
- ii) 基準点と隣合う点である P_(i+1,j), P_(i+1,j+1) を追加し、2 つの基準点との距離をそれぞれ調べる.
- iii) 距離が設定した閾値の範囲内である場合、この4点で3角 メッシュを2つ生成する.
- iv) 基準点を P_(i+1,j), P_(i+1,j+1) に更新し, 2) からの処理を繰り返す.

ここで、図7に示すように隣り合う点同士であっても、レー ザ光の照射位置が奥行き方向に離れていれば必ずしも近距離に あるとは限らない.点同士が離れていると大きく引き伸ばされ たメッシュが生成され、3.4節で説明するテクスチャマッピン グの際にメッシュに歪んだ映像が付与されてしまう.そこで、 iii)で基準点との距離が設定した閾値を超えていた場合はメッ シュの生成は行わず、基準点の更新のみを行う.

本研究では、LiDAR で取得した背景の点群情報から、すべ てのレーザ間でこの処理を繰り返し、3次元のポリゴンとして 背景の形状を復元する.

3.4 テクスチャマッピング

3.3 節では、メッシュの生成により背景の3次元形状の復元 を行った.この3次元情報を用いて、サブカメラで取得した背 景映像をメインカメラ視点の映像に変換する.

3.2 節で各カメラの内部パラメータ, LiDAR とカメラの位置 姿勢関係がすでに求められているため,式(2),(4)から導かれ る次の式(7)によって生成したメッシュを各カメラの画像上に 投影することが可能である.

$${}^{\mathrm{M}}\boldsymbol{p} \simeq \mathbf{A} {}^{\mathrm{F}}\mathbf{R}_{\mathrm{C}}^{-1} ({}^{\mathrm{F}}\boldsymbol{p} - {}^{\mathrm{F}}\boldsymbol{t}_{\mathrm{C}}).$$
 (7)

サブカメラ画像上に投影することで生成したメッシュの画像 上における対応位置を知ることが可能となる.対応する画像上 のテクスチャをメッシュにマッピングすることで,背景のテク スチャ付きの3次元形状を生成することが可能となる.さら に,そのメッシュのメインカメラ画像上での対応関係も知るこ とができるため,メインカメラから背景を見たような映像を生 成することができる.

3.5 映像の合成

本節では、3.4 節で生成されたメインカメラ視点の背景映像 とメインカメラ映像の合成について述べる.本研究では、背 景映像が取得できた領域に式(8)に示すようなアルファブレン ディングを適用することで2つの映像を合成する.

$$\mathbf{I}_{\text{out}} = \alpha \mathbf{I}_{\text{s}} + (1 - \alpha) \mathbf{I}_{\text{m}} \quad (0 \le \alpha \le 1).$$
(8)

I_m, **I**_s がそれぞれメインカメラとサブカメラ(背景)の映像 の RGB 値を表し,式(8)により合成映像 **I**_{out} が出力される. α は、メインカメラ映像に重畳するサブカメラ映像の不透明度 を表すパラメータである. α の値を変化させることで遮蔽物の 透視の度合いを変化させることができる. $\alpha = 0$ のときメイン カメラの映像がそのまま出力され、逆に $\alpha = 1$ のとき映像中の 該当領域が完全な透明となり背景のみが出力される.背景映像 を取得できなかった範囲は $\alpha = 0$ とし, **I**_{out} = **I**_m となる.

4. 実 験

4.1 実験環境

提案手法の有効性を検証するために,図8のような環境で実 機実験を行った.建機は日立建機ZX350Bを使用し,ガレキの 撤去作業時にアームの先端に取り付けるニブラには日本ニュー マチック工業社 S-36XCR を使用した.

4.1.1 使用するセンサ

提案システムでは、2 台のカメラと1 台の LiDAR を使用す る. カメラは、解像度が2,048 × 2,048 pixel の Point Grey Research 社の Grasshopper3 GS3-U3-41C6C-C を用い、入力フレー ムレートを 15 fps に設定した. カメラのレンズには広い視野を 確保するために、焦点距離 8 mm、画角が79.7 deg の1 インチ 対応の固定焦点レンズを用いた. さらに、LiDAR は、2.1 節で 挙げた映像のオンライン提示に関する要求仕様を満たすために

Fig. 8 Experimental setup

(b) Sub camera

(a) $\alpha = 0.7$

(b) $\alpha = 1.0$

Fig. 9 Original image

Fig. 10 See-through image by the proposed method

10 fps の速度で測距可能な Velodyne LiDAR 社の HDL-32e を 使用した. この LiDAR の測定視野は水平方向 360 deg, 鉛直方 向 41.3 deg (+10.67 deg~-30.67 deg), 測定距離は 1~100 m である.

また,センサの設置位置に関しては,把持作業の様子を大き く写すためにニブラの近くに設置することが求められるが,同 時に把持対象物の破片がセンサに衝突して破損する危険も高 まる.センサの建機からの張り出しも同様の危険があること を考慮して,ニブラの回転軸上方である先端から 2.7 m の位置 に長さ 2.0 m の単管フレームを取り付け,その両端にカメラと LiDAR を配置する.これらはすべて同じリンクに固定されて いるため,アームを動作させてもお互いの位置姿勢関係は変化 しない.

4.1.2 位置ずれの要求精度

本項では、映像の位置ずれの定量的な要求精度について述べ る. 2.1 節で述べたように正確な把持を行うためには、位置ず れがニブラのサイズ、特に刃と刃の間の幅と比較して小さいこ とが必要である.本実験で使用するサイズは、ニブラを最大ま で開いた時の間隙の幅が約 1.4 m である.そこで、その 20 分 の1に当たる 0.07 m を要求精度として設定する.本実験では、 センサから把持対象までの距離が 7.0 m である位置からニブラ を近づけていくことを想定し、このとき常に位置ずれが 0.07 m 以内となることを要求する.

4.1.3 閾値の設定

ここでは,3.3 節で述べたメッシュの生成における距離の閾 値の設定を行う.閾値が大きいと映像の欠けは少ないが,一方 で歪んだ映像が生成される.本実験では,映像の視認性の観点 から出力映像の歪みよりも欠けを問題視し,LiDAR と地面と の距離も考慮に入れて,映像の欠けが少なくなるように試行錯 誤的に 500 mm に設定した.選ばれた点がすべて 500 mm 以内 の距離に存在すればメッシュを生成する.

以上の実験環境のもと、オペレータが実際に建機を操縦し、 把持対象である鋼材にアプローチを行い、そのときの映像をオ ンラインで処理し透視映像を生成した.鋼材には、幅 300 mm と 250 mm の 2 種類の H 形鋼を用いた.なお、映像処理用の PC にはクロック数 2.70 GHz の Intel Core i7-6820HQ CPU を

(a) Experimental setup

(b) Model of nibbler

Fig. 11 Experiment for evaluation

Fig. 12 See-through image in outdoor environment

使用した.

4.2 実験結果

4.1 節で述べた実験環境において得られた結果を図 9, 図 10 に示す.図 9(a),図 9(b) はそれぞれ合成前のメインカメラ,サ ブカメラの映像である.どちらの映像でもアームによる死角が 存在し,把持対象であるガレキを一部しか把握できない.図 10 が提案手法によって得られた透視映像である.アルファブレン ディングによる映像合成時の α の値を $\alpha = 0.7$, $\alpha = 1.0$ とし た結果を図 10(a),図 10(b) にそれぞれ示す.提案手法により アームを半透明化し,サブカメラで得られた背景の映像を重畳 することによって,隠されていたガレキ全体を認識できること

を確認した.それによって,複数の映像を見比べたり,アーム を動かして視点を変えたりしなくとも,ガレキの掴むべき位置 や障害物に衝突する危険性を判断することが可能となった.

4.3 評 価

本節では,2.1節で要求仕様として挙げた,屋外環境で適用 可能な手法であるか,または映像のオンライン性と背景映像の 提示位置の正確さの3点について評価を行う.

4.3.1 屋外環境での透視映像生成

2.1 節で示したように、提案手法は屋内・屋外の環境を問わ ずに適用可能であることが求められる.そこで、図 11(a) で示 すような屋外環境においても透視映像が生成可能であるか検証 した.図 11(b) に示すニブラの模型を 2 台のカメラの間に挿入 し、この模型を半透明にして表示した.出力映像を図 12 に示 す.すると、ニブラの模型によって遮蔽された背景に置かれて いるチェッカーボードを透視によって視認することができた. したがって、太陽光の影響を受ける日中の屋外環境であって も、提案手法によって遮蔽物を透視する映像が生成可能なこと を確認した.

4.3.2 映像のオンライン性

映像のオンライン性は遠隔操作のための映像提示において 不可欠な要素である.そこで,出力された透視映像のフレーム レートの計測を行った.任意のタイミングで10秒間計測する と,平均で10.1 fpsという結果となった.また,メッシュの生 成処理にかかる計算時間を計測すると,任意のタイミングの 200回の計測で平均25.8 msであった.その計測結果を図13 に示す.メッシュの生成は約40 fpsで処理可能であるが,出力 される映像は LiDAR の入力フレームレートがボトルネックと なり10 fpsが上限となっている.提案手法によりメッシュの生 成処理が高速に行われたことによって,2.1節で示した要求仕 様を満たすことに成功した.

4.3.3 映像合成時の位置ずれ

ここでは、2 台のカメラの映像を合成したときの背景映像の 位置ずれについて定量的な評価を行う.評価は、センサ間の遮 蔽物を取り除いた環境で行う.遮蔽物が存在しないため、位置 ずれが生じていなければメインカメラの映像とそこに重畳する サブカメラの映像は一致するはずである.定量的な評価のため に図 11(a)のように環境中に大きさが既知のチェッカーボード を地面に垂直に設置して、映像合成時のパターンのずれを計測 する.本実験では、1 辺が 0.13 mの正方形が 10 × 7 個並んだ チェッカーボードを使用し、図 14(b)に示すように白と赤の四 角形で囲まれた格子点の位置ずれを評価した.図 14(a)は実機 実験においてサブカメラ映像を重畳した範囲である.位置ずれ

Measurement points

は、この範囲で要求精度を満たす必要があるため、図 14(c) に 示すようにチェッカーボードを 3 か所に移動させ、それぞれ で格子点の 4 つの端点のずれを計測し、合計で 12 点の平均を とって評価した.また、図 8 のようにシステムを建機に搭載し たときのセンサからニブラの先端までの距離はおおよそ 3.0 m であり、ガレキを把持するためにはこの距離でのずれが最も重 要である.さらに、7.0 m の高さからガレキにアプローチして いくことを想定し、チェッカーボードとメインカメラとの水平 方向の距離を 3.0 m~7.0 m まで 0.5 m おきに変化させて、それ ぞれ計測を行う.

計測結果を図 14(d) に示す. エラーバーは 12 個の計測箇所 の標準誤差を表している. 図 14(d) によると, センサから 3.0 m 離れた地点での位置ずれは 0.018 m であった. 0.018 m という 位置ずれは, 4.1.2 項で示した 0.07 m 以内という要求精度を満 たしている. 位置ずれはセンサから離れるほど大きくなる傾向 があり, 7.0 m の地点では最大 0.038 m のずれが生じた. した がって,本項の評価実験で計測したいずれの地点においても 4.1.2 項で設定した要求仕様を満たしていることが示され,背 景映像のずれが十分小さい正確な映像提示を実現した.

4.4 考 察

本節では,4.3.3 項で示した位置ずれについて考察を行う. 位置ずれの要因としては以下の4点が考えられる.

- i) 環境をポリゴンメッシュに近似していることによる歪み
- ii) 操縦時の振動や衝撃によるセンサのずれ
- iii) 単管フレームのたわみ
- iv) センサのキャリブレーション誤差

i) について, 図 10 に示す透視映像においても鋼材のテクスチャ が引き伸ばされていることがはっきりと確認できるため、これ が最も大きな要因として考えられる.提案手法では、ある閾値 を設定し、その距離の範囲内に存在する点群で三角メッシュを 生成することで、LiDAR だけでは十分に取得できない環境の3 次元情報の補間を行っている.実機実験においては,把持対象 である鋼材と地面との距離が近く、この間でメッシュが生成さ れたことが映像の位置ずれを引き起こしている. 閾値を小さく 設定することで歪みを解消することも可能だが、一方で 4.1.3 項に述べたように映像が欠けることで視認性に難が生じること も考えられる. また, ii) センサの荷重による単管フレームにた わみや iii) 衝撃や振動によって固定したセンサが動いてしまう ことも考えられる.たわみの影響を最も強く受けるのは、荷重 の大きさと張り出しの距離から LiDAR とカメラのセンサ系で ある. 単管フレームの太さや材質も考慮に入れてたわみの計算 を行うと、自重の影響も含めて 0.65 mm, たわみ角は 0.054 deg という計算結果となった. これは他の要因と比べて小さく, ま た iii) についてもセンサの取り付けを慎重に行うことで位置 ずれを軽減することが可能である. iv) ではカメラの内部パラ メータとカメラと LiDAR の位置姿勢関係を表す外部パラメー タの2種類の誤差がそれぞれ生じている.これらのパラメータ はチェッカーボードの位置姿勢を様々に変え、より多くの映像 や点群情報を用いて最適化計算を行うことで誤差を小さくする ことが可能である.また,ニブラによる把持作業では,ニブラ が写る映像中央部の位置ずれが作業効率に大きく影響を与える と考えられる. そのため、キャリブレーションでの最適化計算 において重みを加えることで、映像中央部の重要度を増して各 パラメータを求めることが改善案として挙げられる.

5. 結 論

本研究では,建機を遠隔操作するために,カメラ映像中の遮 蔽物による死角の問題に対して透視映像を生成することで死角 を低減する手法を提案した.従来研究では未解決であった屋外 環境での透視映像の生成に成功し,遠隔操作に必要な映像のオ ンライン性と正確な映像提示を実現した.透視映像によって隠 れていた背景を同時に視認可能となったことで,複数の映像を 見比べることなく1つの映像のみで周囲の状況把握が可能と なった.

今後の課題として、4.4 節で議論したように位置ずれの精度 を改善することが挙げられる.また、提案した透視映像だけで は、環境によっては奥行きの感覚がつかみづらい傾向がみられ た.そのため、深度マップや環境の 3D モデルを提示すること で3次元情報を明示的に示し、遠隔操作の操作性を高めること が考えられる.加えて、従来の映像提示と提案手法による透視 映像提示で遠隔操作における作業効率の比較実験を行い、提案 手法が操作性の向上に有効であるか検証を行う必要がある.

謝 辞

本研究の一部は,総合科学技術・イノベーション会議が主導 する革新的研究開発推進プログラム(ImPACT)の一環として 実施したものである.

参考文献

- S. Tadokoro: Rescue Robotics Challenge, Proceedings of the 2010 IEEE Workshop on Advanced Robotics and its Social Impacts, (2010) 92.
- 関川健一、本間政幸: 無人化施工機械の操作性向上の検討、 http://www.hrr.mlit.go.jp/library/happyoukai/h20/pdf/b/b_10hokugi.pdf (2006).
- 3) 古屋 弘, 栗生 暢雄, 清水 千春: 3 D 画像と体感型操縦を用いた「次世 代無人化施工システム」, 大林組技術研究所報, 76, (2012), 1.
- 4) A. Nishiyama, M. Moteki, K. Fujino and T. Hashimoto: Research on the Comparison of Operator Viewpoints between Manned and Remote Control Operation in Unmanned Construction Systems, Proceedings of the 30th International Symposium on Automation and Robotics in Construction, (2013), 772.
- F. Cosco, C. Garre, F. Bruno, M. Muzzupappa and M. A. Otaduy: Augmented Touch without Visual Obtrusion, Proceedings of the IEEE International Symposium on Mixed and Augmented Reality 2009, (2009) 99
- 6) S. Mori, F. Shibata, A. Kimura and H. Tamura: Efficient Use of Textured 3D Model for Pre-observation-based Diminished Reality, Proceedings of the 2015 IEEE International Symposium on Mixed and Augmented Reality Workshops, (2015) 32.
- J. Herling and W. Broll: Pixmix: A Real-time Approach to High-quality Diminished Reality, Proceedings of the IEEE International Symposium on Mixed and Augmented Reality 2012, (2012) 141.
- N. Kawai, T. Sato, Y. Nakashima and N. Yokoya: Augmented Reality Marker Hiding with Texture Deformation, IEEE Transactions on Visualization and Computer Graphics, 23, 10, (2017) 2288.
- A. Enomoto and H. Saito: Diminished Reality Using Multiple Handheld Cameras: Proceedings of the 8th Asian Conference on Computer Vision, 7, (2007) 130.
- P. Barnum, Y. Sheikh, A. Datta and T. Kanede: Dynamic Seethroughs: Synthesizing Hidden Views of Moving Objects, Proceedings of the IEEE International Symposium on Mixed and Augmented Reality 2009, (2009) 111.
- 11)藤井浩光,杉本和也,山下淳,淺間一:遠隔操作ロボットのための 複数の RGB-D センサを用いた半隠消映像のオンライン生成,精密工 学会誌,81,12,(2015),1185.
- 12) 橘高達也,藤井浩光,山下淳,淺間一:移動可能な RGB-D センサ を用いた任意視点からの遮蔽物透視システム,精密工学会誌,83,3, (2017) 235.
- 13) 佐藤 貴亮,藤井 浩光, A. Moro, 杉本 和也, 野末 晃, 三村 洋一, 小幡 克実,山下 淳, 淺間一: 無人化施工用俯瞰映像提示システムの開発, 日 本機械学会論文集, 81, 823, (2015), 14-00031.
- 14) Q. Zhang and R. Pless,: Extrinsic Calibration of a Camera and Laser Range Finder (Improves Camera Caliblation), Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 3, (2004), 2301.
- A. Kassir and T. Peynot: Reliable Automatic Camera-laser Calibration, Proceedings of the 2010 Australasian Conference on Robotics and Automation, (2010).
- 16) Z. Zhang: A Flexible New Technique for Camera Calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 11, (2000), 1330.
- J. J. More: The Levenberg-Marquardt Algorithm: Implementation and Theory, Numerical Analysis Lecture Notes in Mathematics, 630, (1978), 105.
- 18) Z. C. Marton, R. B. Rusu and M. Beetz: On Fast Surface Reconstruction Methods for Large and Noisy Point Clouds, Proceedings of the 2009 IEEE International Conference on Robotics and Automation, (2009), 3218.