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Defect Detection in Concrete Structures Using Sensor Fusion of Force Sensor and Camera

Jun Younes LOUHI KASAHARA, Shinji MINATO, Alessandro MORO, Hanwool WOO, Atsushi YAMASHITA and Hajime ASAMA

Inspection of concrete structures such as tunnels and bridges is most often performed in outdoor environments where
wind and vehicle noise are strongly present. Therefore, inspection methods must be robust against acoustic noise. The
use of an impact hammer, which has a force sensor embedded in its head, has the advantage of being inherently robust
against acoustic noise compared to the commonly used acoustic hammering inspection method while retaining the same
ease of use. However, being able to capture data only during the short impact time, force sensor alone does not allow for
acceptable defect detection. Therefore, in this study, the detection performance of defects was improved by considering
the position of the crack on the concrete surface and the sample position obtained from a camera image in addition to the
response of the force sensor of the impact hammer. From the experimental results obtained using concrete test blocks in
laboratory conditions, the ability to detect defects with an impact hammer was significantly improved.
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1. Introduction

In Japan, a high economic growth period roughly between 1960
and 1980 enabled the construction of a large number of social in-
frastructures such as tunnels and bridges. Those are predominantly
made of concrete and it is expected that their deterioration will ac-
celerate in the upcoming 20 years. Therefore, the inspection of
concrete social infrastructures is gaining focus, especially in light
of disastrous events such as the collapse of the Sasago tunnel 1).

Current methods used for the inspection of concrete structures
are largely manual, i.e., they require human operators. Such meth-
ods have the drawback of being highly dependent on the skill of
human operators. Moreover, due to the aging of the population, the
number of available human operators is also declining. Therefore
the automatic inspection of concrete structures is highly desirable.

There are several non-destructive testing methods for inspection
of concrete structures 2). Among those dealing with detecting de-
fects beneath the surface, thermographic methods, electromagnetic
methods and stress wave propagation methods are the most popu-
lar. Thermographic methods use infrared cameras and the differ-
ence in thermal conductivity of defects for detection 3). Electro-
magnetic methods use the response to high frequency pulses to
scan portions of the concrete 4). Stress wave propagation meth-
ods use the response to mechanical stress induced to the concrete,
usually from an impact.

One of the most used inspection methods for concrete structure
is the hammering test, a stress wave propagation method, shown
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Fig.1 A human operator conducting the hammering test on the wall portion of
a tunnel.

in Fig. 1. It consists in a human operator hitting the surface of
the structure with a hammer and assessing the presence of defects
beneath the surface from the returned impact sound. Compared
to a simple visual inspection, the hammering test allows to detect
defects beneath the surface and therefore, allows to determine the
propagation direction of the defect beneath the surface. This is
critical since several defects propagating beneath the surface to-
wards the same point present an increased risk of peeling, i.e., a
large concrete slab falling from the structure. Compared to other
inspection methods, the hammering test has the advantage of ver-
satility and simplicity. No heavy equipment is needed and sensors
are not required to be in contact with the concrete, which allows
for very fast inspection of large structures.

Some previous works focused on the pressure characteristics of
the hammering sound 5) or direct methods 6), focusing primarily
on data visualization and integration into a comprehensive inspec-
tion environment with several sensors. However, the majority of



them explored machine learning approaches such as 7) with Linear
Prediction Coefficients, 8) with Neural Networks, 9) with Ensem-
ble Learning, 10)11) with Clustering. However, since sound is used
as input data, the decrease in accuracy in the presence of acoustic
noise is an issue: concrete structures inspection sites are located in
outdoor environments and a fair amount of acoustic noise resulting
from winds and vehicular traffic can be expected.

Therefore, in this study is considered the use of impact ham-
mer for the inspection of concrete structures. This type of hammer
possesses a force sensor embedded in its head and allows to mon-
itor the force feedback during hammering. This allows inherent
robustness against acoustic noise.

The objective of the present paper is to detect defects in concrete
structures using sensor fusion between a force sensor and a cam-
era. During the analysis of the force sensor data, the visible crack
position information obtained from the camera is used conjointly
with the position information of each sample in order to propagate
information from easily detected defect samples in the vicinity of
the visible crack.

2. Method

2.1 Concept
One challenging aspect of data collected by an impact hammer is

its shortness. Indeed, the impact hammer provides much less effec-
tive data volume for defect detection compared to the hammering

(a) Defect areas are characterized as cracks running beneath the
surface.

(b) Side view of the considered concrete portion.
Fig.2 Concept of the proposed method. Samples close to the visible crack and

easy to detect are used in order to boost the detection of defect samples
further away from the crack, which are deep and more difficult to detect.

test. The hammering test is based on audio segments with a du-
ration of about 23 ms each 11) while the impact hammer, allowing
only to provide signal related to the concrete characteristics dur-
ing the immediate moments of impact, is effective only for about
0.2 ms from our experience. The amount of valid data differs by
more than 100 times in terms of time. Therefore, it is desirable to
supplement information necessary for detecting defects by adding
information from other sources.

There are several additional information that can be considered.
Those would be for example the impact sound of the impact ham-
mer, the image of the concrete surface, or the three-dimensional
shape 12) of the concrete surface. However, as stated earlier,
acoustic information presents the drawback of being susceptible
to acoustic noise, a troublesome point in the expected outdoor in-
spection sites. Obtaining three-dimensional shape measurements
requires precise installation of laser devices, hindering the ease of
use and high practicability of using an impact hammer. Therefore,
in this study is considered the use of the image of the concrete
surface, i.e., visual information obtained from a camera, to com-
plement information from the impact hammer. Visual information
is an important part of the inspection process and allows the detec-
tion of portions of defects visible from the surface, i.e., cracks, and
can provide critical information 11)13).

In Fig. 2(a) is shown the locations of defect and non-defect ar-
eas in a considered portion of a concrete structure. A visible de-
fect, i.e., crack, is present on the surface. In Fig. 2(b) is shown
a side view of that same concrete portion. Considering samples
1, 2 and 3 in Fig. 2(b), corresponding to different hit locations on
the concrete, samples 1 and 2 are defects and sample 3 is a non-
defect. Sample 1 is shallow and can be expected to be easy to
detect. Sample 2 is deep and difficult to detect. Those two sam-
ples are also characterized by their distance from the crack on the
surface, close and far, respectively. The concept of the proposed
method is to make use of the crack position on the surface obtained
using a camera in order to propagate information on defects from
samples close to visible cracks to samples far from visible cracks.

2.2 Overview of Proposed Method
Figure 3 shows the processing flow of the proposed method.
First, multiple points on the concrete surface are hit with an im-

pact hammer and the response of force sensor located on its head
is recorded for each sample. In addition, the position information

Fig.3 Overview of proposed method.



Fig.4 Impact hammer model 086C03 from PCB Piezotronics. A force sensor
is embedded in the hammer head and protected by a tip, which is the
point of contact with the concrete surface during the hammering test.

of the crack on the concrete surface is obtained by performing im-
age processing on the camera image. Next, the force sensor data is
converted to Fourier spectrum using Fast Fourier Transform. This
is used as feature vector for the following analysis. Finally, using
a modified Fuzzy C-Means algorithm, samples are clustered into
defects and non-defects.

2.3 Impact Hammer
The used impact hammer is shown in Fig. 4.
The hammer head has a built-in piezoelectric element force sen-

sor made of quartz or ceramic. When a structure is hit using an
impact hammer, the force signal at the time of contact can be mea-
sured from the response of the force sensor: this force sensor con-
verts an external force into a voltage by utilizing the polarizing
property of the piezoelectric element in proportion to mechanical
pressure.

Therefore, from the response of the force sensor, a time-series
data of the contact force when the concrete surface is hit with the
impact hammer can be collected.

Traditionally, the impact hammer is used conjointly with accel-
erators secured onto the surface of the tested concrete structure
relatively close to the impact point in order to conduct modal anal-
ysis 14). However, having to secure sensors onto the surface of the
concrete is a tedious task which is not suited for the inspection
of large-scale structures such as those considered in this paper.
Furthermore, this would involve adhesives which would require
thorough clean-up of the inspected surface in order not to hinder
visual inspections, lengthening the inspection time. Therefore, in
the present study, the impact hammer without any additional sensor
secured on the concrete surface is considered for defect detection
in concrete structures.

2.4 Crack Position Detection Using Computer Vision
In this study, cracks were detected by performing threshold pro-

cessing on camera images.
First, the concrete RGB image obtained from the camera is con-

verted to a grayscale image. Next, the luminance value src(x, y) at
the coordinates (x, y) of the obtained grayscale image is classified
into two values based on a manually set threshold value Tc.

dst(x, y), which is the final luminance value at the coordinates
(x, y) of the binarized image, can be obtained by Eq. (1):

dst(x, y) =

255, if src(x, y) > Tc

0, otherwise
. (1)

(a) Weighting based on crack and distance between samples.

(b) Weighting based on distance between samples.

Fig.5 Illustration of the proposed weighting system.

Since the crack has a lower brightness than the healthy part, the
place where the luminance value dst(x, y) is 0 is defined as the
crack.

2.5 Feature Vector Extraction
The considered dataset is composed of N impact hammer sam-

ples, corresponding each to one hammer strike on one location
of the tested concrete structure. Using Fast Fourier Transform,
the dataset of time-series force sensor samples {Xi}[i=1,....,N ] is
transformed into Fourier Spectrums {xi}[i=1,....,N ].

2.6 Clustering
Separation of samples between defect and non-defect is con-

ducted using Fuzzy C-Means. Fuzzy C-Means is a fuzzy clus-
tering algorithm, meaning that samples belong to several clusters
at the same time but with varying degrees, which are expressed
through fuzzy membership coefficients {uij}i∈[1...N ],j∈[1...K].
Fuzzy membership coefficient uij indicates how strongly the ith
sample belongs to the jth cluster 15).

First, initial cluster centers, or seeds, are randomly chosen
among the dataset. Then, update phases are conducted until a
chosen termination criterion for convergence is met. This update
phase is composed of fuzzy membership update and centroid up-
date steps.

The fuzzy membership update step itself is first computed as in
Eq. (2), where K is the given number of clusters, {cj}j∈[1...K]

cluster centers and m a parameter controlling the fuzzyness of the



system. It is worth noting that this only concerns force sensor data.

uij =

[
K∑
l=1

(
∥xi − cj∥
∥xi − cl∥

)2/(m−1)
]−1

. (2)

The crack position information obtained following the pro-
cess described in Section 2.4 is incorporated into the clus-
tering process via a weighting system using an estimator
{hij}i∈[1...N ],j∈[1...K], as in Eq. (3). This estimator basically
computes what the fuzzy membership of a sample should be ac-
cording to its neighbors in SS. This neighborhood is computed
based on both crack position and position information of samples
on the tested structure. For sample Xi, SS(Xi) corresponds to
samples belonging on the same side of the visible crack.

hij =
∑

k∈SS(Xi)

Wik ukj . (3)

The estimator and the fuzzy membership coefficients computed
on the force sensor data are then combined following Eq. (4), with
p and q parameters controlling the contribution of each source.

u′
ij =

up
ijh

q
ij∑K

l=1 u
p
ilh

q
il

. (4)

Once convergence has been reached, conversion to crisp cluster-
ing is conducted by maximum membership.

2.7 Proposed Weighting System
The proposed weight system Wik in (3) is determined by the

product of two functions Fik and Gik, as in Eq. (5).

Wik =
FikGik∑

l∈SS(xi)
FilGil

. (5)

The concept of the proposed method is that a sample closer to the
visible crack is more likely to be correctly recognized as a defect.
This is reflected through Fik, as in Eq. (6):

Fik =


(

Dcr(Xi)
Dcr(Xk)

)α

, if Dcr(Xi) <
1
2
D(

Dcr(Xi)
Dcr(Xk)

)−α

, otherwise
(6)

Dcr(Xi) and Dcr(Xk) are the shortest distance to crack of
samples Xi and Xk, respectively. Parameter α is a constant defin-
ing how strong is the propagation of information. D is the dimen-
sion of the tested area, which corresponds, assuming the inspection
area has been narrowed down to a square centered on the crack vis-
ible from the surface, to the length of the tested area.

As shown in Fig. 5(a), given the considered sample Xi, the dis-
tance to visible crack Dcr is computed for other samples located
in the same side of the visible crack. For example, Sample 1 and
Sample 2 in Fig. 5(a) are located near and far from the visible
crack, respectively. Therefore, Sample 1 having a higher probabil-
ity of being correctly detected, Fi1 has a larger weight than Fi2.
However, as the sample Xi is farther from the crack, the possibil-
ity that the sample Xi is a defect decreases. This is reflected by
the strength of the surrounding weights decreasing.

The same principle is applicable to very far samples from visible
cracks, which are very likely to be non-defects. Therefore, past
half the dimension of the tested area, the tendency described earlier
is reversed by inversion of the ratio defining Fik.

Fig.6 Generic schematic of the considered concrete test blocks. Dimensions in
mm.

Table1 Characteristics of the considered concrete test blocks.

Block A Block B
Crack angle ρ (deg.) 15 30

Deepest defect dc (mm) 53.6 115.5

Samples which are located close together on the surface of the
tested area are more likely to belong to the same class. This his
reflected through Gik, a function designed to perform increased
weighting as the distance between samples becomes shorter.
Gik is defined as in Eq. (7), with di,k the distance between sam-

ple Xi and the surrounding sample Xk, dN the distance of the
closest sample to Xi and σ a constant.

Gik =
1√
2πσ

exp

{
−
(
di,k
dN

)2

/2σ2

}
. (7)

Figure 5(b) shows a schematic of the positional relationship be-
tween samples. Sample 1 is closer to sample Xi than sample 2,
therefore Gi1 has a larger weight than Gi2. Since sample 1 is
the nearest neighbor of sample Xi, di1 is defined as dN . As for
Fik, samples on the other side of the crack are excluded from the
weighting.

3. Experiments

Experiments were conducted in laboratory conditions using con-
crete test blocks. Those contain defects with precisely known char-
acteristics thanks to elaborate fabrication process.

A generic schematic of the tested concrete test blocks is shown
in Fig. 6. Two blocks, Block A and Block B, were considered
and their characteristics are reported in Table 1. Both were hit at
225 locations following a regular grid for 105 non-defect samples
and 120 defect samples. This grid was used to acquire the loca-
tion of each sample. Collecting samples on the edge of the con-
crete blocks was not done in order to avoid different border con-



ditions. The used impact hammer was a model 086C03 from PCB
Piezotronics (weight 160g, length 216mm, head diameter 15.7mm,
sensitivity 2.25 mV/N, peak force range +/-2224N *1). Force sen-
sor data was recorded using a data logger at the maximum fre-
quency of 105,469Hz in order to obtain as much data as possible
during the short impact time. Tc was manually tweaked around a
value of 100 for best output. Parameters were set as m = 2, p = 1,
q = 1.3, α = 6, σ = 0.8 and D was set to the size of the blocks,
at 500mm.

Experiments were conducted with the following methods:

1. (A) K-Means clustering.
2. (B) Spectral Clustering as described in 16).
3. (C) The method of 11) adapted for use with force sensor data,

i.e., without Mel Frequency Cepstrum Coefficients (MFCC).
4. (D) The proposed method.

The performance of each method was evaluated using the Rand
index 17), a common performance measure of clustering rang-
ing between 0 and 1, with the higher value indicating the better
method.

4. Results and Discussions

The average performance obtained are reported in Fig. 7. Ad-
ditionally, in Figs. 8, 9 and 10 are shown pictures of concrete
test blocks, the outputs of the crack detection, the outputs of the
method of 11) and the outputs of the proposed method for Block A
and Block B, respectively.

It can be first noticed in Fig. 7 that performance for all methods
are lower for Block B than for Block A. This is because the de-
fect in Block B is deeper than in Block A: 53.6mm at the deepest
point for Block A against 115.5mm for Block B. Deeper defects
are more difficult to detect since the thickness of the concrete por-
tion over the crack increases and becomes similar to non-defect
concrete. However, deeper defects can be considered more dan-
gerous since they can potentially result in the peeling off of much
larger amounts of concrete if left unchecked.

Performance of both K-Means and Spectral Clustering for both
blocks were closely similar. While some defects were corrected
detected on Block A, the results on the more difficult Block B were
disappointing.

The method of 11) was adapted here for use with force sensor
data, i.e., the MFCC transformation was omitted since it is only
applicable to acoustic data. While this method still exhibited good
performance on Block A, outperforming K-Means and Spectral
Clustering, it failed as well on Block B. This is certainly due to
the fact that a large part of the performance of the method of 11)

is based on the use of MFCC, as shown in 18). The method of 11)

incorporates a weighting system in Fuzzy C-Means similar to our
proposed method, also using sample position but not using crack
position. This explains the better performance it managed to ob-
tain compared to K-Means on Block A: in Fig. 9(c) it can be seen
that clusters are much more spatially compact and localized. How-

*1 The complete specifications for the impact hammer can be found at
https://www.pcb.com/products?m=086C03
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(a) Average performance on Block A.

(A) (B) (C) (D)
0.4

0.5

0.6

0.7

0.8

0.9

R
a
n
d
in
d
ex

(b) Average performance on Block B.

Fig.7 Performance of K-Means (A), Spectral Clustering (B) 16), method of 11)

(C) and the proposed method (D) on the considered concrete test blocks.
Average performance over 20 runs are reported. Error bars corresponds
to 1 standard deviation.

ever, the limits of this method are apparent on Block B, shown in
Fig. 10(c), where almost no improvement over K-Means’ output,
shown in Fig. 10(b), can be seen except a slightly increased com-
pacity of defect and non-defect areas.

The proposed method achieved the highest performance on both
Block A and Block B. It can be seen in Figs. 8(b) and 8(d) that
the visible cracks were correctly detected for both Block A and
Block B. The proposed method outperforming the method of 11)

indicates the advantages provided by the inclusion of crack posi-
tion in the weight system during the clustering by Fuzzy C-Means.
On Block A it managed to defect more defect samples thanks to the
increased influence from easy to detect defects. The method of 11)

on Block A, shown in Fig. 9(c), had several undetected defect sam-
ples on the upper defect area. Those were successfully detected
using the proposed method, as shown in Fig. 9(d). The propaga-
tion of defect information enabled by our proposed method can be
observed: a clear tendency to correctly detect samples on a single
side of a crack is noticeable.

This is even more apparent on Block B, where it managed to tip
the balance from a detection failure in Fig. 10(c) to the output in
Fig. 10(d). Here, while there is an overspill on the non-defect area,
the output is much more in line with the ground truth of defects.



(a) Block A. (b) Crack detection. (c) Block B. (d) Crack detection.
Fig.8 Crack detection outputs of the proposed method on the considered concrete test blocks.
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Fig.9 Example outputs on Block A.
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(a) Ground truth on Block B. Red line
shows position of crack on the sur-
face.
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(b) Output of K-Means.
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(c) Output of 11).

Defect
Non-defect

(d) Output of proposed method.

Fig.10 Example outputs on Block B.

This overspill can be attributed to the small right-side non-defect
area size, which did not allow to present enough difference not to
be assimilated into the defect cluster.

5. Conclusion

In the present paper, defect detection in concrete structures using
sensor fusion between a force sensor and a camera was proposed.
The proposed method allowed defect detection with a force sen-
sor, with its inherent robustness to acoustic noise, with high per-
formance. Visual information from the camera was incorporated in
the force sensor data analysis by extraction of the position of the
visual crack and propagating the defect information from easily
detected samples. Experiments using concrete test blocks showed
that the proposed method has improved detection performance, es-
pecially on deep defects.

In the future, we would like first to conduct experiments with ad-

ditional, larger test blocks, to further investigate the effects of the
overspill observed on Block B. Furthermore, we would like to con-
duct experiments in more realistic, field conditions. To this aim,
we will improve the visual crack detection portion of our proposed
method with more robust approaches, such as 19) for example.
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