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In this paper, we propose a self-supervised optical flow-based approach to learn the rotation of an
arbitrarily moving spherical camera. Nowadays, deep learning has enabled efficient learning of camera
rotation efficiently. However, most approaches are fully supervised and require large datasets with
ground-truth labels of the rotation, and these labels are difficult to acquire. We attempt to solve this
problem by using a derotation operation of the spherical optical flow on a unit sphere. This operation
decouples the camera rotation from the mixture of translational and rotational components, removing
the effect of 3D information for rotation estimation. Therefore, we integrate a derotation layer into
a convolutional neural network for regressing the camera rotation. This layer can be adopted for
only spherical cameras, which can capture all-round information, and thus enables the network to be
learned the camera rotation without using labeled training datasets. We experimentally demonstrate
that our approach achieves the comparable performance for the rotation estimation to that of a fully
supervised approach, and that it outperforms a previously proposed approach. Moreover, transfer
learning is conducted in new environments to confirm the benefit of the self-supervised learning.

Keywords: Self-supervised learning; rotation estimation; spherical camera; optical flow derotation;
convolutional neural network

1. Introduction

Motion estimation of cameras is essential in robotic applications such as simultaneous local-
ization and mapping (SLAM) [1] and structure from motion [2] as these applications require
the movement of cameras. Recently, learning-based approaches have adopted for camera mo-
tion estimation using convolutional neural networks (CNNs) [3–5], and these approaches have
performed equivalently or better than the conventional feature-based approaches. Among them,
fully supervised learning approaches have been often utilized to regress the camera motion using
raw images or optical flow fields as inputs. However, they require a large number of datasets
with accurate labels, which are difficult to acquire. Many attempts have been made to capture
such datasets using motion capture systems [6,7], GPS/IMU systems [8,9] and other sensors
[10]. However, they often require precise sensor calibrations and collection/annotation expenses.
Meanwhile, self-supervised learning approaches have recently emerged for scenarios in which it
is difficult to acquire such labels, e.g. in the field of person re-identification [11], video hashing
[12], and image classification [13]. These approaches offer the benefit that they do not require
any labeled data, as they only utilize the collected data. For the camera motion estimation,
many self-supervised approaches have been employed [14–17] and have shown estimation results
comparable or better than fully supervised learning approaches.
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Figure 1. Spherical cameras can capture images as (a) spherical and (b) planar equirectangular projections owing to their
360◦ field-of-view.

Camera-based motion estimation has been explored in many robotic applications. Among
various types of cameras, spherical cameras have attracted attention because of their large field-
of-view. In addition, because of their 360◦ wide field-of-view (Figure 1), they are more beneficial
than perspective cameras. This all-round view enables the estimation to be more robust against
changes in environments, such as moving objects [18] or partially occluded regions [19]. There-
fore, there has been an extensive body of research dedicated to the use of spherical cameras
in tasks that involve motion estimation. These research have shed light on the advantages of
having a 360◦ field-of-view [20–22]. To process spherical images in a plane, the captured images
should be stretched to equirectangular projection (Figure 1(b)), similar to [23,24]. However,
the equirectangular projection contains a distortion in the images, making the process difficult.
To solve this problem, many studies have attempted to process spherical images in a spherical
domain [25,26], and these studies have confirmed effective estimation.
Dense optical flow [27–29], which represents frame-to-frame pixels movement, has been com-

monly used to estimate the camera motion [30–32] or object motion [33,34]. In many previously
conducted studies for learning-based camera motion estimation, raw images were often used to
train the network. However, raw images make the training vulnerable to overfitting due to raw
RGB pixel intensities. Even if the images were captured at the same location, the difference in
RGB pixel intensities disturbs the training, and the results of the testing would be different.
Meanwhile, optical flow can help make the training less vulnerable to raw RGB pixel intensities
[32]. However, the optical flow for an arbitrarily moving camera still contains 3D structure in-
formation of environments, because of the parallax effect induced by camera translation. This
results in multiple optical flow patterns with the same translation, making the learning difficult.
Therefore, it is necessary to be able to distinguish between translation and rotation in optical
flow fields.
As explained earlier, optical flow represents different patterns with the same motion due to

camera translation, which is affected by different 3D structures of environments. Because of this
difference, the network finds it difficult to learn camera rotation. To resolve this problem, we
attempt to decouple the rotational optical flow from the mixture of translational and rotational
components. This enables the network to avoid the overfitting problem, which is attributed to
the translational optical flow. In this paper, we propose a learning-based method to estimate
the rotation of a spherical camera. Especially, we design an optical flow derotation network
to estimate the camera rotation in a self-supervised manner. This network explicitly rotates an
input optical flow on a unit sphere and can be combined with CNNs. In addition, the network can
regress the camera rotation without using any camera rotation label in the entire training data.
After derotating the optical flow, a moment-based loss function, which is similar to that in [35],
is used to estimate a 3 DoF camera rotation. We experimentally confirm that our derotation-
based self-supervised approach obtains comparable results with that of the fully supervised
approach and outperforms the results of a previously proposed self-supervised approach, i.e.,
SfMLearner [36], in terms of rotation estimation. Furthermore, transfer learning is conducted in
new environments to confirm the benefit of self-supervised learning, which can easily fine-tune
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the network. The following are the contributions of this research.

• We propose a self-supervised learning network to estimate the spherical camera rotation
without using labeled training data.

• A derotation layer is designed to decouple rotational and translational optical flow com-
ponents, avoiding the overfitting problem.

• Transfer learning is conducted to confirm that the self-supervised approach can realize
simple retraining in new environments.

2. Related work

Here, we introduce several research related to this study, fully supervised learning approaches
and self-supervised learning approaches to estimate spherical camera rotation.

2.1 Fully supervised approaches for camera rotation estimation

Recently, deep learning-based approaches have been proposed to estimate a camera rotation
[3–5,37]. In these approaches, the networks were often trained using a large number of images
captured via cameras. While training the networks, the image features should be extracted via
loss minimization, which enables the camera rotation to be regarded as a regression problem. The
loss minimization often comprises the distance between ground truths and estimated values, such
as L1-norm [38], L2-norm [4,5], and similarity metrics [37]. In camera rotation estimation, the
loss functions are constructed using rotation representations such as Euler-angle [39], quaternion
[32,40], and rotation matrix [41]. These approaches are referred to as fully supervised learning, as
they require all the ground-truth labels of camera rotation. The ground-truth labels are critical
to composing the above mentioned loss functions. Namely, fully supervised learning approaches
can efficiently estimate the camera rotation using distance-based loss functions.
However, there is a drawback that these approaches cannot appropriately train the network

unless the ground-truth labels of the camera rotation are provided. These labels are often ac-
quired using motion capture systems [6,7] or GPS/IMU systems [8,9], as explained in Section 1.
However, it is difficult to acquire accurate labels because of sensor errors or calibration er-
rors. In addition, motion capture systems are limited in their application, as they can only be
used in well-equipped spaces. GPS-based systems cannot function in situations wherein radio
waves do not reach the systems because of obstacles such as buildings or bridges. Even if labels
are acquired, overfitting, which lowers the estimation accuracy, may occur in new environments
where the labels are not obtained. Therefore, a new training method to estimate camera rotation
without using labels is required.

2.2 Self-supervised approaches for camera rotation estimation

In fully supervised learning approaches, labels of camera rotation are required, which are diffi-
cult to acquire. Meanwhile, self-supervised learning approaches have been proposed to estimate
the camera rotation without using labels. These approaches provide pseudo-supervision signals
to optimize networks, instead of direct supervision signals, which are formed using labels. For
camera rotation estimation, the pseudo-supervision signals comprise certain loss functions. For
example, [36,37] synthesize images to compose a photometric consistency loss and [15,17] con-
straint multiple transformation matrices geometrically. Especially, [15,38] attempt to estimate
the rotation of a spherical camera by utilizing the benefit of its wide field-of-view. These ap-
proaches have shown a possibility to train the learning network without requiring direct labels
of camera rotation.
However, since these methods require simultaneous estimation of camera rotation and transla-
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tion, the translation may lower the accuracy of the rotation estimation. This can be a drawback
when estimating only the rotation parameters in a mixture of the camera rotation and transla-
tion. In this paper, we propose a new method which can estimate only the rotation parameters
without considering the effect of the camera translation.

3. Proposed method

Here, we explain the proposed self-supervised learning network to estimate the 3 DoF rotation
of a spherical camera. First, we introduce a unique property of spherical optical flow; using the
property, rotational and translational optical flow components are decoupled. Next, an optical
flow derotation operation using the unique property is described with an optical flow moment-
based loss function. Finally, we explain the proposed network, the combination of CNN and a
derotation layer. This network does not require any explicit label of the training data.

3.1 Spherical optical flow

An arbitrary motion of spherical cameras is a combination of translation and rotation. Further-
more, the optical flow of spherical images has a distinct capability of distinguishing between
translation and rotation, as first elucidated in [42]. In a normal perspective camera, yawing to
the counterclockwise direction and translating to the left are significantly similar to each other,
making it difficult to distinguish between them, as shown in Figure 2. However, in a spherical
camera, it is easy to figure out whether the camera is rotating or translating, as information can
be accessed from all directions.
When spherical cameras are in the pure translational state, the optical flow of all the pix-

els diverge from the translation direction q and converge to its opposite pole q′, as shown in
Figure 2(a). Essentially, the optical flow vectors are directionally symmetric in the case of pure
translation. However, in the case of the pure rotational state, the optical flow vectors move in
circles, perpendicular to the rotational axis, as shown in Figure 2(b). These spherical optical
flows can be computed using two planar equirectangular images, as shown in Figure 3. This
distinguishing property of the spherical optical flow can be used to decouple the rotational and
translational optical flow components. Specifically, a derotation operation can remove the effect
of the rotational components from the mixture of the both the optical flow components on a
sphere. In addition, this operation can be realized using a simple rotation matrix of all the axes.
After derotating the optical flow, the translational components remain without any effect of the
rotation.

3.2 Optical flow derotation

The spherical optical flow can be derotated using an input optical flow data and output 3 DoF
rotation parameters (α, β, γ) in the angle-axis. These parameters can be regressed without any
prior information of the input optical flow data, i.e., a label. Here, the label means a ground-
truth of rotation parameters. This regression enables the network to learn camera rotation
in a self-supervised manner, as the labels of the rotation parameters are not required in the
derotation operation. To conduct this, we construct an optical flow derotation-based loss function
to estimate the camera rotation without any prior information. This loss function utilizes a
symmetric property of the optical flow on a unit sphere. A concrete explanation about the loss
function will be described in the next Section 3.3. As a representation of the rotation parameter,
we adopt a quaternion, q ∈ R4, whose values are normalized as 1. Using the quaternion q =
[qw, qx, qy, qz], a derotation matrix RT

q can be calculated on a unit sphere, as follows:
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Figure 2. Optical flow on spherical and planar projections. (a) Spherical and perspective optical flow with the pure transla-
tional movement of t (from q to q′) of a spherical camera, and (b) the pure rotational movement of R to the counterclockwise
direction.

(a) Translation (b) Rotation

Figure 3. Optical flow computation results. The optical flow in the equirectangular projection with (a) the pure translation
from q to q′, and (b) the pure yawing rotation. The optical flow with the pure translation are seen that they are aligned
along the red curved lines, indicating the epipolar curves.

RT
q =

1− 2q2y − 2q2z 2qxqy + 2qwqz 2qxqz − 2qwqy
2qxqy − 2qwqz 1− 2q2x − 2q2z 2qyqz + 2qwqx
2qxqz + 2qwqy 2qyqz − 2qwqx 1− 2q2x − 2q2y

 . (1)

Using the derotation matrix, images can be derotated directly, and the spherical optical flow
can be re-calculated. However, the computational cost of this process is high when considering an
iterative regression. To solve this high cost problem, we derotate the initial location of the optical
flow x̂i = [xi, yi, zi]

T rather than the images themselves. Namely, the vectors of the optical flow
are derotated on a sphere. Therefore, the derotated location of the optical flow x̂d = [xd, yd, zd]

T ,
which is derived using the initial location x̂i, can be expressed as follows:

x̂d = RT
q x̂i. (2)

After conducting the derotation operation, the derotated optical flow vector fd, which is de-
rived using the initial optical flow vector f i, can be expressed by subtracting x̂d from the point
at the end of the initial optical flow vector x̂i + f i, as follows (Figure 4):

fd = (x̂i + f i)− x̂d. (3)
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Figure 4. The initial optical flow vectors f i are derotated using the rotation matrix of quaternion RT
q , and then the

reprojected optical flow vectors fd are obtained.

Figure 5. Magnitude normalization of the optical flow. In the pure camera translation of t, polar opposite points on
the sphere (P1 and P2) produce moments in the opposing directions. However, the magnitudes of the two optical flow
projected on the sphere are different due to depth information in the opposite points. Accordingly, the optical flow f need
to be normalized by their magnitudes |f |. By normalizing the optical flow, the pure translational optical flow becomes
depth-independent, keeping symmetry.

In the derotated optical flow vector fd, only the translational component remains. As explained
in Section 1, the 3D structure information of the environments, which induce overfitting in the
training, are included in the translational optical flow. Accordingly, the derotated translational
optical flow fd is normalized by its magnitude |fd| for considering only its direction, as shown
in Figure 5. In Figure 5, the opposite points P1 and P2 represent different magnitudes even if
the camera translates with the same value of t, as their distances from the camera center are
different. This disturbs the symmetry of the optical flow in the pure translational state. Using
this normalization, the derotated optical flow becomes symmetrical to the optical flow that is
located in the opposite side.
To estimate the 3 DoF rotation parameters, we adopt an optical flow moment-based loss

function, which comprises the normalized derotated optical flow and the location there of. Here,
the above mentioned optical flow normalization enables the network to regress the 3 DoF rotation
parameters by intrinsically ignoring the 3D information. The total optical flow moment M over
every pixel x̂d on the sphere S can be calculated using the cross product of the pixel location
and the normalized optical flow as follows:

M =
∑

∀x̂d∈S

(
x̂d ×

fd
|fd|

)
. (4)

The optical flow moment loss function can be minimized and can be used to estimate the
3 DoF rotation of the spherical camera without using any labels of the training data.
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Figure 6. The proposed network. First, the unlabeled optical flow is generated from the two frame images with an arbitrary
motion, and is entered into a feature extraction network of the convolutional neural network (CNN). Next, the optical flow is
derotated on a sphere using the quaternion outputs, and the optical flow moment is calculated. Last, moment minimization
regresses the rotation parameters in a single-pass fashion. The entire process can be conducted in a self-supervised manner
without using any explicit labels of the camera rotation.

3.3 Self-supervised learning network

The proposed self-supervised learning network for rotation estimation of the spherical camera
is summarized in Figure 6. The optical flow calculated using two frame images enters into the
CNN for feature extraction, and the output consists of 3 DoF rotation parameters. Using the
rotation parameters, the input optical flow is derotated in the derotation layer, as explained
in Section 3.2. Here, the derotation layer conducts a geometric operation meant to calculate
the moment. Subsequently, the derotated optical flow comprises the moment as a loss function
Lself , and the rotation parameters are regressed via loss minimization. The weight parameters
of our network are updated through backpropagation started from the moment minimization in
a single-pass fashion. The loss function Lself is minimized as an L2-norm ∥·∥ of the optical flow
moment Mi in all the training data i, as follows:

Lself =
∑
i

∥Mi∥2. (5)

At the end of our network, the output is normalized to consider a quaternion representation.
In addition, the initial value of the quaternion is set to be [1, 0, 0, 0]T , which is equivalent to
zero rotation, to give the network a good starting point in training. This is also because two
optical flow moments calculated at two symmetric points, whose angles from the translation
direction are θ and θ− π, respectively, comprise the same value of moment. The 3 DoF rotation
parameters are estimated by minimizing Lself . This estimation can be performed without using
the labeled training data. The only requirements are the input spherical optical flow and 3 DoF
rotation parameters to derotate the optical flow.
For the feature extraction network, the following blocks of the CNN were adopted:

conv1/BN[16], conv2/BN[32], conv3/BN[64], conv4/BN[128], conv5/BN[256], conv6/BN[256], fc1[512],
and fc2[4]. The notation conv/BN[c] is the combination of convolution and batch normalization
[43] layers with c filters of size 7/5/3/3/3/3 with stride 2× 2 and a ReLU [44] activation layer.
Finally, a fully connected layer fc[n] was used with n nodes. The final layer, fc2[4], was normalized
in order to convert the output to the quaternion.

4. Experiments

To verify the effectiveness of our approach, several rotation estimation experiments were con-
ducted including ablation studies. For quantitative comparison, a previously proposed SfM-
Learner [36] experiment was conducted using the same dataset without pre-trained weights.
Furthermore, a fully supervised learning experiment, which used the labels of camera rotation,
was also conducted. In the fully supervised learning experiment, we set two types of the input
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data, namely, the optical flow and raw images, to demonstrate that the optical flow prevents
overfitting, which the raw RGB pixel intensities often suffer from. First, we explain the man-
ually collected dataset using a simulator. We then describe the training details and estimation
evaluation. Finally, transfer learning is conducted in new environments to confirm the benefit of
our self-supervised learning approach.

4.1 Dataset composition

The input optical flow was generated using raw images, which were rendered by Blender [45].
For the optical flow computation, we adopted MR-Flow [29]. All the raw images in the equirect-
angular projection were captured from a classroom scene1, as shown in Fig 1. For the conditions
of the dataset, the rotation angles between two frames were randomly chosen from within -5◦ to
5◦ in each axis (roll, pitch, and yaw). In addition, the translation along each axis (x, y, and z)
was also randomly chosen from within -0.1m to 0.1m, to enable the optical flow computation.
The quantity of training, validation, and test datasets amounted to 18,142, 2,196, and 1,641
frames, respectively. For the entire data, the ground truths of the rotation angles were recorded
only for evaluation. The input data comprised two channels, namely, the horizontal and vertical
components of the optical flow, with a resolution of 200×100 pixels.

4.2 Training details

The learning process was conducted with an Adam optimizer [46] for 100 epochs with the fixed
learning rate of 0.0001 and batch size of 32. The entire computation was performed on an NVIDIA
GeForce GTX 1080 (GPU) and an Intel Core i7-8700K (CPU). In terms of the computational
time, the training and testing the included optical flow calculation took approximately 2.7 h and
6 min (5 fps), respectively.

4.3 Rotation estimation evaluation

We evaluated the proposed self-supervised learning approach by comparing it with a previously
proposed method, namely, SfMLearner [36], and a fully supervised approach. They were trained
using the same datasets, which were introduced in Section 4.1. All the training was conducted
without any pre-trained weight. The fully supervised learning network, whose composition was
the same as that of our network, adopted the Euclidean distance ∥·∥ between the ground-truth
quaternion q̂ and normalized estimation value q/∥q∥ (similar to [5]), as the following loss function
Lsup:

Lsup =

∥∥∥∥q̂− q

∥q∥

∥∥∥∥
2

. (6)

We found that the estimated quaternion becomes close to the ground-truth quaternion. There-
fore, directly adopted the Euclidean distance loss to avoid unnecessary network optimization in-
terference, which is also described in [32] and [40]. The estimation results of the spherical camera
rotation were evaluated on the entire testing data. The evaluation metrics of the rotation error
in all N testing data were the average rotation error (ARE) and median rotation error (MRE),
as follows:

1Available under CC0 license in http://www.blender.org.
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Table 1. Ablation studies and quantitative comparison.

Methods ARE (◦) MRE (◦)

SfMLearner [36] 0.610 ±0.349 0.544

Our (w/o BN) 0.390 ±0.284 0.349

Our (full) 0.370 ±0.288 0.317

Supervised (raw images) 0.529 ±0.395 0.469

Supervised (optical flow) 0.324 ±0.255 0.286

(a) Raw frame: equirectangular projection (b) Input optical flow: translation + rota-
tion

(c) Derotated optical flow: only translation (d) Subtracted optical flow: (b)-(c), only ro-
tation

Figure 7. The estimation example in the equirectangular projection. (a) The raw frame of the planar equirectangular
projection, (b) input optical flow from the mixture of the translational and rotational camera movements, (c) translational
optical flow calculated using the derotation operation with the estimated rotation parameters, and (d) rotational optical
flow by subtracting of (c) from (b).

ARE =
1

N

∑
i

2cos−1(q̂i · qi), (7)

MRE = Median
{
2cos−1(q̂i · qi)

}
, (8)

where ARE denotes an averaged angular error between the ground-truth quaternion q̂i and the
estimated quaternion qi of data i, and · depicts a scalar product. The term MRE denotes a
median angular error between both the quaternions, and Median denotes a median value.
The ablation studies and quantitative comparison for rotation estimation are presented in Ta-

ble 1, with the results of the proposed self-supervised learning approach, SfMLearner, and fully
supervised learning approach. The evaluation metrics on the test data were set as ARE and
MRE in the angle-axis configuration. From the results, it is evident that the proposed approach
confirmed that ARE decreased by about 39.3% comparing to the SfMLearner and showed com-
parable performance with that of the fully supervised learning approach. In the ablation study
regarding batch normalization, we confirmed that the batch normalization layer contributed the
performance improvement, preventing from overfitting. This improvement implies that the batch
normalization layer reduced internal covariate shift between the network parameters effectively.
From the fully supervised learning experiments, we also confirmed that the optical flow was a

more robust training data than raw images, whose RGB pixel intensities induced the overfitting
problem. In addition, ARE of rotation estimation trained using the optical flow was lower than
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Table 2. Average rotation errors when using several optical flow calculation methods.

Optical flow methods EpicFlow [28] DeepFlow [27] MR-Flow [29]

ARE (◦) 0.501 ±0.349 0.436 ±0.306 0.370 ±0.288

(a) Urban scene (b) Corridor scene (c) Cafe scene

Figure 8. New environments for transfer learning. (a) The outdoor urban scene, (b) indoor corridor scene, and (c) indoor
cafe scene. The transfer learning can be conducted by simple data collection without using the camera rotation labels.

Table 3. Data quantities in new environments.

Number of data Training data Testing data

Urban scene 4,990 332

Corridor scene 3,684 566

Cafe scene 4,588 771

that of the raw images by approximately 38.8%.
In Figure 7, we show an example of the rotational optical flow decoupled from the mixture of

the translational and rotational optical flow components by using the derotation operation. We
confirmed that our derotation network could decouple the rotational and translational optical
flow components.

4.4 Effect of optical flow estimation method

We also conducted additional experiments to use other optical flow calculation methods, Deep-
Flow [27] and EpicFlow [28], and their results are described in Table 2. We confirmed MR-Flow
[29] resulted the lowest ARE with the ground-truth rotation parameters. From the results, we
found that our moment-based approach largely depends on the accuracy of the optical flow cal-
culation. The accuracies are compared by the optical flow benchmark dataset named MPI Sintel
Flow Dataset [47]. The MR-Flow method will be adopted from the following experiments.

4.5 Transfer learning in new environments

Our self-supervised learning approach has a benefit that it can train a network by using unlabeled
training data. This indicates that only simple image collection is required without the time-
consuming labeling task. Therefore, transfer learning can be quickly realized in new environments
by our network, whereas a fully supervised learning approach cannot conduct transfer learning
easily. We conducted transfer learning in entirely new environments, an outdoor urban scene [20]
and indoor corridor1, cafe scenes [48], as shown in Figure 8. In the transfer learning, pre-trained
weights, which were trained in the classroom scene, were set as the initial weights of the network
for giving a good starting point. All transfer learning in each scene was conducted for 60 epochs
with a fixed learning rate of 0.0001 and batch size of 32. The quantities of the training and
testing data in each scene are described in Table 3.

1Available under CC0 license in http://www.blender.org.
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Table 4. Transfer learning (TL) results in various environments.

Methods
Urban scene Corridor scene Cafe scene

ARE (◦) MRE (◦) ARE (◦) MRE (◦) ARE (◦) MRE (◦)

Supervised Learning 0.735 ±0.371 0.677 0.659 ±0.364 0.595 0.251 ±0.119 0.240

Our (before TL) 0.598 ±0.342 0.562 0.640 ±0.352 0.584 0.186 ±0.095 0.172

Our (after TL) 0.142 ±0.065 0.133 0.507 ±0.280 0.449 0.174 ±0.109 0.156

The estimation results in each scene are provided in Table 4. We confirmed that the transfer
learning significantly decreased the rotation estimation error in all the environments. Compared
with the fully supervised learning, ARE after the transfer learning decreased by approximately
80.7%, 23.1%, and 30.7% in the urban, corridor, and cafe scenes, respectively. In addition,
compared with ARE before the transfer learning, ARE after the transfer learning were decreased
by approximately 76.3%, 20.8%, and 6.5% in the urban, corridor, and cafe scenes, respectively.
The rotational optical flow shows the same pattern irrespective of the structure of environ-

ments, as the information acquired via the frame-to-frame camera rotation are the same. How-
ever, the translational optical flow shows different patterns in different environments, as the
information are changed because of the camera movement. This indicates that the estimation
performance lowers in the case of different environments. However, our transfer learning method
could solve this problem by retraining newly collected data without any label.

5. Conclusion

In this paper, we proposed a self-supervised learning approach for rotation estimation of a spher-
ical camera. In general, fully supervised learning approaches require a large amount of labeled
data, which are difficult to acquire. By contrast, our self-supervised learning approach can ac-
complish the training without using any labeled data. This approach is unique to spherical
cameras owing to their property that optical flow can be derotated for decoupling rotational and
translational optical flow components. For the regression of the camera rotation, we adopted the
optical flow moment, which comprises the derotated optical flow. We experimentally confirmed
that the estimation error of our approach was decreased comparing to the previous SfMLearner
approach, and that the performance of our approach was comparable with that of the fully su-
pervised learning approach. This implies that our approach could effectively estimate the camera
rotation without using any labeled data. In addition, several ablation studies demonstrated that
the batch normalization contributed to the improvement of the estimation performance and that
the optical flow acted as robust training data rather than raw images. Finally, transfer learning
with newly captured datasets was conducted to confirm the performance improvement.
In this paper, the optical flow was calculated using two equirectangular images, which were

projected on a plane. However, this optical flow could be directly calculated on a sphere because
spherical images are captured using spherical cameras. Also, an optical flow calculation network
combined with our rotation estimation network should be designed to directly optimize our
network. These will be our future works for improving the estimation performance.
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