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In construction sites, construction machinery such as excavators plays a critical role. The management of such equip-
ment, notably the monitoring of actions conducted by each construction machinery, is, therefore, key to high productivity
and efficiency. This time-consuming and laborious task is currently conducted manually by humans and thus, its au-
tomation is highly sought after. Previous works on this issue have achieved high performance using deep learning-based
approaches and cameras. However, the investments needed to obtain the training data critical to such approaches are often
prohibitive. Using a simulator to generate the training data appears therefore as an alternative to allow fast and easy gath-
ering of training data. However, models trained using such training data perform poorly on real data. The purpose of this
study is therefore to increase the performance of action recognition of construction machinery such as excavators using
simulator-generated training data. A data augmentation process using background images gathered from actual construc-
tion sites is used to reduce the gap between simulator-generated data and real-world data. Experiments with data collected
in an actual construction site showed the effectiveness of the proposed method.
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1. Introduction

In the construction industry, heavy machinery represents a large
portion of a project’s budget. Those are usually machines such
as excavators, dump trucks, bulldozers, ... Despite the recent ad-
vances that pushed forward the automation of many processes, the
construction industry is known to still have lower efficiency com-
pared to other fields such as the manufacturing industry 1). One key
aspect to improve efficiency is the monitoring of the aforemen-
tioned construction machinery. However, this is still a task con-
ducted by human workers, either on-site during the actual project
or afterward using video recordings. Therefore, the automation
of construction machinery monitoring, i.e., action recognition of
construction machinery, is highly desirable.

Previous works that focused on the action recognition of con-
struction machinery can be distinguished between those using on-
board sensors and those using outboard sensors. Commonly used
onboard sensors are encoders and GPS 2) and have the merit of
providing reliable and low dimensional data for action recogni-
tion. However, the use of such sensors involves modifications on
each of the monitored construction machinery. This can be pro-
hibitive for scenarios involving a large fleet of machines or rented
machines. Commonly used outboard sensors are cameras and mi-
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crophones 3)1). Those have the merit of being usually already in-
stalled on construction sites for other purposes such as surveillance
and archiving. Furthermore, a single sensor can potentially allow
the monitoring of several machines simultaneously. However, the
data dimensional is higher and those sensors are less reliable: cam-
eras are affected by lighting conditions and microphones are af-
fected by wind noise.

Researches on action recognition using cameras have seen a
great surge in recent years, due to two factors. First is the boom of
cameras, resulting in higher availability at lower costs and higher
resolutions. Second is the progress in machine learning, namely
the advent of deep learning, which allowed the processing of cam-
era information at higher levels. While human action recognition
is predominant 4)5), some deep learning-based approaches for ac-
tion recognition of construction machinery using cameras were
also proposed 6)˜8). One unsolved issue for such approaches is the
gathering of training data. Indeed, while deep learning approaches
can boast high performance, they are critically dependent on the
available training data, i.e., labeled data. Compared to human ac-
tion recognition, for which more labeled data is made available on
almost a daily basis, labeled data on specific targets such as con-
struction machinery hardly exists. Additionally, since construction
machinery usually operates in construction sites where access is
restricted, the gathering of large training data required for deep
learning approaches is also very difficult from a logistical perspec-
tive.

In our previous works 9)10), we have attempted to tackle this is-



sue by a sim2real approach consisting of using training data gen-
erated by a simulator instead of training data gathered at an actual
construction site. Promising results were obtained. However, the
achieved performance was lacking, mainly due to the domain shift
between simulator-generated data and actual data, i.e., differences
in image features between the simulator and the real world.

Therefore, the objective of this paper is to achieve higher per-
formance in action recognition of construction machinery without
using real-world training data. This is achieved by data augmenta-
tion using background images obtained in actual construction sites
of simulator-generated training data.

2. Concept and Overview

Video data generated using a simulator and data gathered in the
real world differ in many aspects. Therefore, a learning model
matching class labels with input data would learn different rela-
tionships and ultimately perform poorly if trained exclusively us-
ing a simulator and tested on real-world data. This is an issue glob-
ally known as domain shift, which refers to the mismatch between
the training and testing data. This is caused by several inconsis-
tencies between the simulator environment and the real world: the
appearances being affected by varying lighting, background clut-
ter, etc.

Video samples can be roughly divided into foreground objects
and background. Among all the causes for the domain shift, in this
study, we focused on the background portion of the video samples.
In the proposed method, we argue that the domain shift can be
filled in large part by using actual background images of the con-
struction site. While obtaining actual training data from the con-
struction site where deployment is expected, i.e., labeled footage
of the excavator operating in the real world, has high costs due to
the need to label the accumulated data, obtaining background im-
ages is easy since there is no need for tedious labeling. Therefore,
in this study images obtained in actual construction sites where
the system is expected to be deployed are used to bridge the dif-
ferences between simulator-generated training data and real-world
data. Concretely, data augmentation is conducted by substituting
the background in simulator-generated training data with images
of actual construction sites.

3. Method

3.1 Action Recognition of Excavator
Excavators are one of the most common construction machin-

ery. They are also critical in earth moving work, consisting of
displacing soil, which is fundamental in construction 11). In this
process, as illustrated in Fig. 1, the excavator digs the ground and
loads the extracted soil onto a dump truck 12). The workflow can
be distinguished into the following steps:

1. Dig soil
2. Rotate to face the dump truck
3. Load soil onto the dump truck
4. Rotate back to face the digging location

Steps 2 and 4 essentially consist of the same excavator action,
they only differ by whether the bucket is full or empty. The earth

Fig.1 An excavator conducting earth moving work

Fig.2 The three action classes considered in this study

moving work can therefore be decomposed into three excavator
action classes: ”digging”, ”turning” and ”loading”. Those are il-
lustrated in Fig. 2.

3.2 Training Data Generation Using a Simulator
While gathering training data in actual construction sites re-

quires heavy investments in logistics and manpower, generating
training data for action recognition of excavator in a simulator is
comparatively easy. In this study, Vortex Studio was used as a
simulator to generate the needed training data. Vortex Studio is a
real-time simulator for operating mechanical systems and allows
the operation of construction machinery such as excavators among
others 13).

Since a simulator is used here, there is virtually no limit in the
number and diversity of camera viewpoints that can be realized.
Most scenarios for automated action recognition of construction
machinery involve the use of fixed cameras in the construction site.
The locations where those cameras can be placed are limited in
practice and can be reasonably expected to be decided in advance,
i.e., in the planning phase of the construction project. Therefore, in
our experiments, we generated training data with viewpoints very
roughly matching the viewpoints of the data collected in the actual
construction site.

In this study, a model of an excavator was controlled in Vor-
tex Studio manually to continuously perform excavation, turning,
and loading, as illustrated in Fig. 3. The simulator was set up in
what could be described as the most neutral conditions with a de-
cent light source illuminating the excavator model from the top.
For the action class ”turning”, video segments with the bucket full



Fig.3 Excavator in the simulator environment of Vortex Studio

and empty were generated. Recordings were also taken from sev-
eral viewpoints. Those recordings were then segmented to separate
each action and labeled accordingly.

3.3 Data Augmentation
In our previous work 9), a video filter was used to attempt to

bridge the simulated-to-real gap between the training data gener-
ated using a simulator and the test data gathered in actual con-
struction sites. However, the accuracy of action recognition was
low due to the influence of the background present in real con-
struction sites. This issue could not be solved using our previous
approach. Therefore, it is necessary to add various backgrounds
to the training data generated in the simulator 14). However, the
addition of backgrounds that are not related to the test data will
have the opposite effect of further lowering the action recognition
performance 15). Therefore, in this study, data augmentation of the
simulator-generated training data is conducted using background
images of the actual construction site.

Several images were taken from a construction site in Motomiya
City, Fukushima Prefecture, Japan, for data augmentation. Those
are shown in Fig. 4.

Those images correspond to the backgrounds where excavators
of the test dataset operate in. In the scenario considered in the
present study, the monitoring of construction equipment is con-
ducted using cameras. The locations where cameras can be posi-
tioned in a construction site are limited so as not to impede con-
struction activities and safety. Those can therefore be known in ad-
vance: for example, the location and orientation of fixed cameras
for surveillance purposes are usually decided at the planning stage
of a construction project. Those images were selected in order to
reduce the domain shift between the simulator-generated training
data and the test data obtained in a real construction site.

The simulator offers the advantage of allowing rapid and easy
generation of excavator motion along with the corresponding ac-
tivity labels. However, the simulator differs from the real world in
many aspects. This causes the domain shift and impedes the ef-
fectiveness of the trained model. Those images were selected in
order to reduce the domain shift by matching the background in
both data.

It is worth noting that, unlike gathering labeled video segments,
gathering those background images is relatively easy. Using those
background images and a video editing software, the background
in the training data generated in the simulator was replaced with
background images from the construction site, as shown in Fig. 5.
By including those background images in order to match the back-

ground images between the training and test data, the domain shift
can be largely reduced.

3.4 Learning Model
In this study was used a combination of Convolutional Neu-

ral Network (CNN) with Long Short-Term Memory (LSTM) 16),
which showed initially high recognition accuracy on human action
recognition but also on excavator action recognition 10). CNN is
a network in which the intermediate layer is composed of a con-
volutional layer and a pooling layer, and a feature map containing
spatial information can be extracted. LSTM is a network able to
learn long-term dependencies and is therefore suitable for time-
series data. The use of both CNN and LSTM allows recognition
of the excavator’s actions considering both spatial and temporal
information.

This architecture can be thought of potentially suffering from
the gap in camera perspective on the excavator itself between the
training and testing data. However, as mentioned earlier, it can be
reasonably be expected that the camera perspective of the test data
would be at least roughly known in advance. In the cases where
this assumption does not hold, since our approach has the advan-
tage of using a simulator to generate the training data, i.e., can gen-
erate training data of virtually any camera perspective, the number
of camera perspectives in the training data could be expanded at
very little cost to bridge the gap.

In Fig. 6 is shown an outline of the learning model. The training
data generated using a simulator is used as input data. Training
data consists exclusively of video data. First, RGB image data
is gathered by extraction from each video frame contained in the
training data sample. Then, the extracted RGB data is inputted to
the CNN, and image features are extracted. Those are inputted into
the LSTM. The LSTM consisted of three layers and the last soft-
max layer classified each sample between each excavator action
class.

4. Experiments

In our experiments, all video segments were taken at a resolution
of 1920*1080 and at a framerate of 30 fps. The duration of each
video segment was not unified: the average duration was 7s, with
the shortest being 4s and the longest being 13s.

During learning, RGB data is first extracted from each frame
of a video segment of the training data. The RGB data is then
converted to a size 298*298*3. Following that, it is inputted into a
CNN for feature extraction. The used CNN was Inception V3 17), a
network pre-trained on more than 1 million images. The extracted
features are then finally passed to the LSTM. Training of both the
CNN and the LSTM were done using the Adam optimizer with a
batch size setting of 32 and for 150 epochs.

Three methods were considered in our experiments:

1. CNN+LSTM, serving here as a baseline, differing with the
proposed by only the absence of the data augmentation step.

2. The method of 10).
3. The proposed method.



Fig.4 Background images collected in actual construction sites

Fig.5 Data augmentation using background images from actual construction
sites

Fig.6 Outline of the learning model

4.1 Data Gathering in Actual Construction Site
To measure the performance of our system, test data was col-

lected in an actual construction site located in Motomiya City,
Fukushima Prefecture, Japan, where a standard excavator was con-
ducting earth moving work, as shown in Fig. 7. Due to the activity
of the construction site, resulting in various heavy machinery op-
erating in the close vicinity, the number of available recording lo-
cations was limited. Nonetheless, recording of the excavator con-
ducting earth moving work was successfully conducted from three
camera viewpoints. Segmentation and labeling of the obtained data
into the three action classes presented earlier were conducted man-
ually. The resulting data contained 90 video segments, comprised
of 30 video segments per action class.

4.2 Data Generation in Simulator
As mentioned previously, training data was generated using Vor-

tex Studio, a real-time simulator. The camera viewpoints in the
simulator were set up to roughly match the ones that were avail-
able during the test data gathering in the actual construction site, as
illustrated in Fig. 8. 180 labeled video segments were generated,
consisting of 60 video segments per action class. Additionally, a

(a) Test data collected in an actual construction site

(b) Data collection process

Fig.7 Test data gathered in actual construction site

smaller dataset of 60 video segments, comprised of 20 video seg-
ments per action class, was separately generated for testing pur-
poses.

For each training video segment obtained using a simulator,
data augmentation was conducted with 3 randomly selected back-
ground images from an actual construction site. Therefore, fol-
lowing data augmentation, the training data generated using a sim-
ulator contained 540 video segments, comprised of 180 video seg-
ments per action class.

5. Results and Discussions

To measure the performance of the action recognition system,
the classification accuracy was computed as in (1).

accuracy =
Number of correctly classified video segments

Total number of video segments
∗ 100

(1)
In Fig. 9 are reported the accuracy values for the considered

methods for both the test data generated in the simulator and the
test data gathered in the actual construction site.



Fig.8 Viewpoints in simulator and in actual construction site

Fig.9 Accuracy comparison

(a) Confusion matrix of the method of 10)

(b) Confusion matrix of the proposed method
Fig.10 Confusion matrices of the considered methods in experiments with test

data gathered in actual construction site

CNN+LSTM as well as the method of 10) achieved high accu-
racy of over 90% on the test data generated in the simulator. This
shows that the learning process itself was successful: when train-
ing and testing are conducted with simulator-generated data, al-
though there is no overlap between them since they were both gen-
erated in the same simulator environment, both methods showed
a solid performance. However, when tested on the data collected
in the actual construction site, both models see their performance
drop considerably, down to about 50%. This is due to the do-
main gap between the simulator and the actual construction site:
the models here are not able to learn effective features for action
recognition in actual construction sites from simulator-generated
data. The proposed method shows a slightly lower performance
than the other two methods when tested on simulator-generated
data. This is certainly due to the introduction of background im-
ages from actual construction sites, which are irrelevant for the test
data generated in the simulator and have the opposite effect of hin-
dering performance. This is in line with the findings of 15). How-
ever, the benefits of our proposed method are visible when tested
on the data collected in actual construction sites: while there is
still some performance drop, the model still managed to perform
at over 70% accuracy.

The study published in 18), also using a camera-based Deep
Learning approach but with training conducted with real-world
training data, reported performances of about 75% accuracy. This
is similar to the performance of our proposed method, which has
the merit of only using easy-to-obtain simulator training data. Hu-
man action recognition is a more flourished field and several ap-
proaches with varying levels of performance have been proposed
over the recent years 19). Among them approaches such as 20) used
simulator-generated training data to augment the real-world train-
ing data and reported performances up to 81% accuracy.

In Fig. 10 are reported the confusion matrices obtained by the
method of 10) and the proposed method in the same conditions as
those in Fig. 9. Looking at the diagonal of the confusion matrix
of the method of 10) shown in Fig. 10(a), it can be seen that only
the class ”turning” has been somewhat correctly recognized: about
80% of ”turning” samples were correctly classified. The perfor-
mance is much more lacking for the other two classes of ”digging”
and ”loading”, with correct classification rates of about 40% and
20%, respectively. The proposed method, for which the confusion
matrix is shown in Fig. 10(b), shows a much better performance
equally across action classes: looking at the diagonal of the confu-
sion matrix, correct classification rates remain between 60 to 80%.
While keeping the classification performance of the ”turning” class
at the same level, our proposed method managed to significantly
increase performance for the two other classes. The ”digging”
and ”loading” classes are characterized mainly by the movements
of the boom and bucket, as seen in Fig. 2. Those are more sub-
tle movements compared to ”turning” that involves rotation of the
body. We surmise that the inclusion of real background images
allowed the proposed method to grasp such subtle movements for
action recognition, which was not possible for the method of 10).

It is worth noting that in our study only a single model of exca-
vator was considered. Furthermore, this model was a generic one,



only roughly matching the excavator contained in our test data col-
lected in an actual construction site. Since except for some extreme
cases, excavators across different manufacturers roughly possess
the same configuration, we surmise that our results are still valid
even with other extractors from different manufacturers.

In rare cases where an excavator from a manufacturer exhibits
particular characteristics, i.e., has large disparities with the exca-
vator model used in the simulations generating the training data,
the simple counter-measure of changing the model in the afore-
mentioned simulator could be easily taken.

Additionally, in our study, the excavator model in the simulator
was operated by a single individual. In the field, the actual exca-
vator was operated by a different individual. Therefore, the issues
related to individual differences of operators were not investigated.
According to 21), the differences in excavator movements across
operator skill levels are apparent in small movements parameters,
namely the speed of movement, the range of motion, and the angle
of bucket. Those small contributions from each individual small
differences through several work cycles ultimately result in visible
differences between excavator operation by different individuals.
Since our proposed system is based on short videos segments, the
influence of individual differences between operators is thought of
having only limited effects.

6. Conclusion

In this paper was proposed a method to augment simulator-
generated training data using background images collected in ac-
tual construction sites to increase action recognition performance.
By replacing the background in video segments generated in a
simulator with real-world background images, the model showed
a significantly better ability to learn the features characteristic of
each of the considered excavator action classes without the use of
real-world training data.

In the future, we would like to pursue efforts to further increase
the action recognition performance of our system, including focus-
ing on the issue of viewpoint changes. In our experiments, training
data was generated to roughly match the viewpoints in actual con-
structions sites and therefore, if the viewpoint information is not
available at the training data generation phase, lower performance
can be expected since camera-based approaches are known to suf-
fer from changes in viewpoints 22).
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