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Abstract— In this paper, we propose robust sensing method
against bubble noises in aquatic environments with a stereo
vision system. Usually, three-dimensional (3-D) measurement by
robot vision techniques is executed under the assumptions that
cameras and objects are in aerial environments. However, an
image distortion occurs when vision sensors measure objects in
liquid. It is caused by the refraction of the light on the boundary
between the air and the liquid, and the distorted image brings
errors in a triangulation for the range measurement. Additionally,
it is often the case that there exist air bubbles in the field of view
when we observe aquatic environments. Therefore, it becomes
difficult to acquire clear images because of these view-disturbing
noises. As to the former problem, accurate 3-D coordinates of
objects’ surfaces in liquid are measured by taking for calculating
the refraction effect. As to the latter problem, bubble noises
are eliminated from a moving image to divide objects in the
image into still backgrounds, moving objects, and bubble noise
by an image processing technique. Experimental results showed
the effectiveness of our proposed method.

I. I NTRODUCTION

In this paper, we propose robust sensing method against
bubble noises in aquatic environments with a stereo vision
system.

In recent years, demands for underwater tasks, such as
digging of ocean bottom resources, exploration of aquatic en-
vironments, rescues, and salvages, have increased. Therefore,
underwater robots or underwater sensing systems that work
instead of human become important, and technologies for
observing underwater situations correctly and robustly from
cameras of these systems are needed. However, it is very
difficult to observe underwater environments with cameras,
because of the following two big problems.

1) Bubble noises (Fig. 1(a))
2) Refraction effects (Fig. 1(b))
The former problem is about suspended matters, such as

bubble noises, small fishes, and small creatures. They may
disturb camera’s field of view (Fig. 1(a)).

The latter problem is about the refraction effects of light.
If cameras and objects are in the different condition where
the refraction index differs from each other, several problems
occur and a precise measurement cannot be achieved. For
example, Fig. 1(b) shows an image of a single rectangular
object when water is filled to the middle. In this case, the size
and the shape of the object look different between above and
below the water surface. These problems occur not only when
a vision sensor is set outside the liquid but also when it is

(a) Bubble noise. (b) Refraction effects.

Fig. 1. Examples of aquatic images.

set inside, because in the latter case we should usually place
a protecting glass plate in front of viewing lens. Therefore, it
becomes difficult to measure precise positions and shapes of
objects when water exists because of the image distortion by
the refraction of the light.

As to the former problem about view-disturbing noises,
there are several methods that can remove noises from images
or can detect moving objects other than moving noises, such
as snowfall noises, waterdrop noises, and so on [1]–[7]. These
techniques remove moving objects or noises by taking the
difference between the initial background scene and a current
scene, or taking the difference between temporarily adjacent
two frames. These methods are robust against the change of
background [2] or the change of the lighting condition [3],
and can also remove snowfall noises [4] or waterdrop noises
[5]–[7]. Image interpolation method [8] that adopts computer
graphics technique can remove noises by using only one
image. However, these methods are not suitable for removing
bubble noises in aquatic environments. This is because they
have uncertain outlines, or are not automatic method in which
human operator must indicate the positions of noises.

As to the latter problem about refraction effects, three-
dimensional (3-D) measurement methods in aquatic envi-
ronments are also proposed [9]–[12]. However, techniques
that do not consider the influence of the refraction effects
[9]–[11] may have the problems of accuracy. Accurate 3-D
measurement methods of objects in liquid [13]–[17] with a
laser range finder by considering the refraction effects are
also proposed. However, it is difficult to measure moving
objects with a laser range finder. A stereo camera system is
suitable for measuring moving objects, though the methods by
using a stereo camera system [12] have the problem that the
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Fig. 2. Outline of the proposed method.

corresponding points are difficult to detect when the texture
of the object’s surface is simple in particular when there is the
refraction on the boundary between the air and the liquid. The
method by the use of motion stereo images obtained with a
moving camera [18] also has the problem that the relationship
between the camera and the object is difficult to estimate
because the camera moves. The surface shape reconstruction
method of objects by using an optical flow [19] is not suitable
for the accurate measurement, too.

In this paper, we aim at solving above two problems.
The first aim is to reduce the influence of bubble noises

in aquatic images by using image processing techniques. In
this paper, we use a clustering method that can distinguish
moving objects from bubble noises with characteristics such
as object’s color, its size, and so on. After that, only bubble
noises are removed.

The second aim is to measure moving objects in aquatic
environments accurately. Our method uses a stereo vision
system. We construct accurate 3-D measurement method by
considering the refraction effects in aquatic environments.
Robust detection of corresponding points of stereo image pairs
can be also realized under epipolar constraints by considering
the refraction effects.

Finally, we combine these two techniques to realize robust
observation of moving objects against bubble noises in aquatic
environments.

II. EXTRACTION OF MOVING OBJECTS

Overview of bubble noise removal method is shown in
Fig. 2. In our method, bubble noises are distinguished from
extracted moving objects after clustering them in acquired im-
ages. Finally, noise-free images can be generated by removing
bubble noises from images.

The method extracts moving objects from a color image
sequence by the following procedure.
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Fig. 3. Background estimation and generation.

(a) n-th frame. (b)(n + m)-th frame. (c) Background.

Fig. 4. Quasi-still moving object.

1) Estimate a background image periodically.
2) Extract moving objects by the background subtraction.
3) Classify moving objects and distinguish bubble noises

from other moving objects by referring to their colors,
sizes and so on.

A. Background Estimation

After acquiring time-series stereo images, moving objects
are extracted from left and right images respectively by using
background subtraction method.

Background images must be prepared in advance, or must
be generated in the process of measurement. Our method
generates background images by using the histogram of time-
series pixel values (brightness of each pixel).

The process of background generation is as follows. At first,
image data is accumulated during a certain fixed period as
color data which consists of R, G, and B color components.
Then, these images are converted to grayscale images, and
histograms whose horizontal axes are pixel values and vertical
axes are frequency of appearance of pixel values are generated
(Fig. 3). Background pixel value of each pixel is regard as
the pixel value with the highest frequency of appearance in a
certain period. After that, grayscale data is converted back to
RGB values by calculating the average RGB color values in
the times of the highest frequency.

In order to respond to scene change owing to time progres-
sion, background scenes are generated periodically.

However, quasi-still moving objects that moves very slowly
and whose positions hardly change during a certain fixed
period of background generation may exist in the generated
background images (Fig. 4). In this case, quasi-still moving
objects are regarded as background scenery and cannot de-
tected as moving objects.

It is assumed that the generated first background contains no
moving or quasi-still moving objects. If the second background
contains quasi-still moving objects, they can be detected
by calculating the difference between the generated present



(a) Present one. (b) Previous one. (c) Interpolation area.

Fig. 5. Background correction.

background (second background) and the previous one (first
background). Therefore, the regions where quasi-still moving
objects exist in the present background can be interpolated by
using the previous background (Fig. 5).

In this way, we can detect and measure quasi-still moving
objects.

B. Extraction of Moving Objects

Moving objects in the image sequence are detected by
background subtraction. Background subtraction is a method
for extracting the moving objects in the image by taking the
difference between the background image generated before-
hand and the present image. We use the background image
shown in Section II-A for background subtraction.

C. Classification of Moving Objects

In order to distinguish moving objects from floating air
bubbles, ISODATA (Iterative Self Organizing Data Analysis
techniques A) clustering method [20] is employed.

This technique is based on randomly choosing initial cluster
centers, or means. These initial cluster centers are updated
in such a way that after a number of cycles they represent
the clusters in the data as much as possible. The ISODATA
algorithm circumvents the problem by removing redundant
clusters. Whenever a cluster centre is not assigned enough
samples, it may be removed. In this way one is left with a
more or less optimal number of clusters. We adopt the variety
of ISODATA method proposed in [21].

Our ISODATA method classifies objects by the following
procedure (Fig. 6).

1) Set parameters (number of final clusters, divergence
condition of splitting and merging and so on).

2) Assign primary cluster centers initially.
3) Assign samples to the nearest cluster.
4) Recalculate the cluster centers and reassign samples

(Repeat until reassignment settles).
5) Discard samples in clusters with few members.
6) Calculate the distance between clusters and the variance

within each cluster.
7) Split the cluster with the largest variance or merge

clusters with smallest distance between them according
to divergence condition.

The IOSDATA method can flexibly classify objects by
learning the optimal number of classes according to merging
and splitting of the classes. Various features such as an object
size, color component values and a vector of motion can be
used as data for clustering. In this paper, we use the size
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Fig. 6. Outline of ISODATA clustering method.

of each moving object and RGB color component values as
feature values.

D. Removal of Bubble Noises

In this paper, we assume that a view of the camera is inter-
rupted by air bubble noises and that the number of air bubble
noises is the largest among all moving objects. Therefore, the
class with the largest number of elements becomes the class
of the air bubble noises and the others become the class of
the measurement objects1. Finally, we use the latter objects
for the following procedure and remove the former objects by
replacing them with pixel values of the present background
image.

E. Noise Removal around Moving Objects

It becomes difficult to measure moving objects accurately
when a part of air bubbles remains in surroundings of them.
We solve this problem by matching the position of the moving
object between the previous frame and present frame, and
calculating the logical product (Fig. 7).

III. 3-D M EASUREMENT BY RAY TRACING

First of all, it is necessary to search for corresponding points
from a right and left image to measure the object by using the
stereo vision system. The corresponding points can be detected
by using the epipolar constraints (Section III-B).

After detecting corresponding points, an accurate 3-D mea-
surement can be executed by considering the refraction effects

1It will be also possible to distinguish bubble noises from other moving
objects by using the difference of color, shape, and trajectory.



Fig. 7. Shape correction of moving object.
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of light in aquatic environments. At first, we explain about the
principle of 3-D measurement that is based on the ray tracing
technique.

A. Ray Tracing from Each Camera

Refractive angles at the boundary surfaces among air, glass
and water can be determined by using Snell’s law, if location
and orientation of the glass surface are known (Fig. 8).

We assume the refractive index of air and the glass to ben1

and n2, respectively, and the incidence angle from air to the
glass to beθ1. A unit ray vector~d2 = (α2, β2, γ2)T (T denotes
transposition) traveling in the glass is shown by Equation (1).
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where~d1 = (α1, β1, γ1)T is the unit ray vector of the camera
in air and ~N = (λ, µ, ν)T is a normal vector of the glass
plane.

A unit ray vector ~d3 = (α3, β3, γ3)T traveling in water is
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Fig. 9. Epipolar constraints in aquatic environments.

shown by Equation (2).
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wheren3 is the refractive index of water andθ3 is the angle
of incidence from the glass to water.

An arbitrary point ~Cp = (xp, yp, zp)T on the ray vector is
shown by Equation (3).
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where ~C2 = (x2, y2, z2)T is the point on the water tank plane
andc is a constant.

Two rays are calculated by ray tracing from the left and the
right cameras, and the intersection of the two rays gives the
3-D coordinates of the target point in water.

B. Detection of Corresponding Points

We use noise-free stereo image pairs that is explained in
Section II-E for detecting corresponding points.

The relationship between corresponding points of the left
and the right images is formulated with epipolar constraints,
and the corresponding points exist on the epipolar lines [22]. In
aerial environments, the epiplor line is straight after correcting
the image distortion derived from the effect of the lens
distortion [23]. However, the epipolar lines are not straight in
aquatic environments because of the refraction of light (Fig. 9).
Therefore, we calculate the epipolar lines with the ray tracing
technique in the same way of Section III-A [14]–[16].

Corresponding points on epipolar lines are searched for with
template matching by using the normalized cross correlation
(NCC) method.

After corresponding point and disparity of each pixel are
acquired, the 3-D position of each corresponding point can be
measured with triangulation.

IV. EXPERIMENT

We constructed an underwater environment by using a water
tank and an air shower (device to generate air bubbles) (Fig.
10). It is an equivalent optical system to sinking the waterproof
camera in underwater. We used two digital video cameras for



Fig. 10. Experimental setup.

(a) Original image 1. (b) Original image 2.

(c) Moving object 1. (d) Moving object 2.

(e) Noise-free image 1. (f) Noise-free image 2.

Fig. 11. Experimental result 1.

taking 30fps moving pictures whose sizes are 720×480pixels.
Background images were generated from 30 frames, and the
update cycle of the background was 3fps.

A. Extraction of Moving Objects

We used a wooden ball and scissors for experiment. Figure
11 shows an example of original image, classified moving
objects, and noise-free images, respectively. Green, red, blue
colors mean bubble noises, wooden ball, scissors, respectively
in Fig. 11(c) and (d). These results show that each object is
classified as a different object and measurement objects are
well extracted.

B. 3-D Measurement Result

We measured 3-D position and shape of a fish-like object
moving in the water tank (Fig. 12). The result of 3-D measure-
ment (front view) is shown in Fig. 12(c). Color density means
the depth of the object in this figure. The bird eye view result

(a) Original image. (b) Moving object.

(c) 3-D measurement (front view).

(d) 3-D measurement (bird eye view).

Fig. 12. Experimental result 2.

is shown in Fig. 12(d), and it is verified that 3-D position and
shape can be measured with high accuracy by considering the
refraction effects.

We also measured the 3-D position of the wooden block
moving horizontally in the tank (Fig. 13(a)–(f)). We used a
robot manipulator to move the wooden block, and estimated
measurement result by comparing it with the actual path that
was made by the manipulator. The measured trajectory of the
object is shown in Fig. 13(g). This shows that the target was
measured nearer to the cameras by 20−30mm compared with
the actual path when refraction is not considered. The target
was measured near to the actual path when the refractive index
was taken into consideration.

V. CONCLUSION

We proposed a method for extracting measurement objects
from noisy images with air bubbles in aquatic environments,
and a method for 3-D measurement of the extracted objects
using a stereo camera system. We confirmed the validity of
the proposed method by experiments.

However, misclassification sometimes happens when differ-
ent moving objects come into the field of view. It is also a
problem that the processing cost is rather high. Therefore,



(a) Left image 1. (b) Right image 1.

(c) Left image 2. (d) Right image 2.

(e) Left image 3. (f) Right image 3.

(g) Trajectory of the moving object.

Fig. 13. Experimental result 3.

it will be necessary to improve the extraction method of
measurement objects in the future (e.g. [24], [25]). It will be
necessary to examine the problem of measurement accuracy
such as the corresponding point search and camera calibration
for 3-D measurement (e.g. [11]).
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