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Abstract: Map information is important for path planning and self-localization when mobile robots accomplish au-
tonomous tasks. In unknown environments, however, mobile robots should generate an environment map by themselves.
We propose a method for 3D environment modeling by a mobile robot. A 3D environment model can be generaterd from
the result of 3D measurement using image data. To realize a 3D measurement of objects more efficiently, the robot uses
an image sequence acquired by an omni-directional camera which has a wide field of view. The measurement method is
based on structure from motion. A triangular mesh is constructed from measurement data. Experimental results showed
the effectiveness of the proposed method.
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1. INTRODUCTION

Map information is important for path planning and
self-localization when mobile robots accomplish au-
tonomous tasks. In unknown environment, however,
mobile robots should construct an environment map by
themselves.

3D measurement using image data makes it possible
to generate map information [1]. However, an image ac-
quired by a conventional camera has limited field of view
[2]. For the problem, a camera which has wide field of
view has been proposed, a fisheye cameras [3], an omni-
directional camera [4] [5] and so on. Taking account of
installation on a mobile robot, an omni-directional cam-
era is suitable because it can get an around view im-
age at once. Gluckman and Nayer show that an omni-
directional camera is effective in measurement and recog-
nition of environment [6].

A stereo vision method using two omni-directional
cameras is also proposed [7]. The measurement accu-
racy by stereo vision depends on the baseline length. The
longer the baseline length is, the better accuracy is. How-
ever, the measurement accuracy of the above method is
limited because a baseline length cannot be longer than
the robot size. Then, a motion stereo method using stereo
pair images which is taken with a single camera at each
observation point is equivalent to binocular stereo vision.
In this method, baseline length can be longer without
restriction of the robot size [8]. Therefore, the method
can measure with high accuracy than a measurement by
binocular stereo vision.

Measurement accuracy can be expected by using a
sensor fusion method using laser [9], GPS [10] or sonar
[11] with an omni-directional camera. However, there
are some problems that measurement objects and situa-
tions are limited and complexity of calibration process
for each device increases.

Structure from motion (SFM) is a kind of motion
stereo method. SFM estimates the camera motion (the
relative relations of camera positions and orientations),

and then measures objects in images taken at each ob-
servation point. The method extracts and tracks feature
points to get corresponding points in an omni-directional
image sequence. By position relations of the correspond-
ing points, the method estimates camera motions and
measures environment. A triangular mesh is generated
from measurement data. By texture-mapping, a 3D envi-
ronment model is constructed.

Estimation of precise camera motion is important for
improvement in accuracy of measurement by SFM. It
is necessary to optimize a triangular mesh to match the
physical shape of the environment. Then, we propose a
method for precise estimation of camera motion and gen-
eration of an optimized triangular mesh for construction
of the model which adapts to physical shape.

2. OUTLINE

A mobile robot executes 3D measurement and model-
ing by using an omni-directional camera (Fig.1). The mo-
bile robot acquires an omni-directional image sequence
during its locomotion.

The process of our method is shown in Fig.2. The
method extracts and tracks feature points to get corre-
sponding points in an omni-directional image sequence.
By the linear estimation, it estimates the camera motion
by using the positions of corresponding points in two im-
ages taken at each observation points. With the camera
motion and the image coordinates of the feature points,
the 3D coordinates of object points are calculated by tri-
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Fig. 2 Process

angulation. By the nonlinear estimation, it can estimate
the camera motion more precisely than the linear one.
Finally, the individual measurement data is combination
and integration.

3. ALGORITHM

3.1 Corresponding Point Acquisition
For getting correspondent points between images in

the omni-directional image sequence, the method extracts
feature points in the first image and then tracks them
along the sequence. In our method, we use Lucas Kanade
tracker algorithm with image pyramid representation [12]
(Fig.3).

Tracking feature points is so easy that the points are
characteristic visually (high contrast, rich texture, etc.).
These points are regarded as corresponding between two
images taken at before and after the robot movement.
Then, we extract the points which are more characteristic
in the images.

3.2 Essential Matrix Calculation
We define a unit vector originating from the center of

projection to an object point in 3D space as a ray vector
r = [x, y, z]T , where T stands for transposition of vec-
tor or matrix. An omni-directional camera we use has a
hyperboloid mirror in front of a lens of a conventional
camera. Therefore, as shown in Fig. 4, ray vectorr is
directed from the focus of the hyperboloid mirror to the
refection point of the ray on the mirror surface (Fig.4).

Ray vectorr is calculated from image coordinates
[u, v]T of the feature using Eq.(1) and (2).

r =

 su
sv

sf − 2c

 (1)
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a2

(
f
√
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√
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)

a2f2 − b2(u2 + v2)
(2)

In the equations,a, b and c are the hyperboloid pa-
rameters andf is an image distance which is the distance
between a center of a lens and the image plain.

Matrix E which satisfies Eq.(3) is called an essential
matrix,

r′Ti Eri = 0 (3)

Fig. 3 Feature Extraction and Tracking

where ray vectorsrT
i = [xi, yi, zi]T , r′Ti = [x′

i, y
′
i, z

′
i]

T

are those of the corresponding point in two images, re-
spectively. Essential matrix contains information about
relative position and orientation differences between two
observation points.

Equation (3) is transformed into Eq.(4),

uTe = 0 (4)

where
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i, zix

′
i, xiy
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T

e = [e11, e12, e13, e21, e22, e23, e31, e32, e33]T

(ejk is the rowj and columnk element of matrixE).
Essential matrixE is obtained by solving simultaneous
equations for more than eight pairs of corresponding ray
vectors. This means that we solve Eq.(5).

min
e

∥ Ue ∥2 (5)

whereU = [u1, u2,… , un]T . e is given as the eigenvec-
tor of the smallest eigenvalue ofUT U and then essential
matixE is obtained.

3.3 Outlier Rejection
All feature points tracked along the image sequence do

not behave satisfactorily as corresponding points because
of image noise and so on. Feature points of mistracking
should be rejected as outliers. To solve this problem, we
employ a method of RANSAC (RANdom SAmple Con-
sensus）[13].

In the procedure, we select randomly eight feature
points, which are the minimum number of points for de-
termining essential matrixE. Let Erand be the essential
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matrix determined by using these feature points, andk
be the number of feature points satisfying Eq.(6), respec-
tively, whereq is a given threshold.

|r′Ti Erandri| < q (6)

We repeat this process of determining essential matrix
Erand and numberk for predetermined times. Then we
choose the case with the maximum number ofk, and re-
move feature points that do not satisfy Eq.(6) as outliers.
Finally, we calculate essential matrixE by Eq.(5) using
the remaining feature points.

3.4 Decision of Number of Feature Points
The estimation of camera motion by using the eight

point algorithm can calculate rotation matrixR and trans-
lation vectort if we get at least eight pairs of correspond-
ing points. However, if there are few pairs of the cor-
respondence point, it is difficult to estimate the camera
motion precisely because of the influence of various er-
rors in images. It is better to extract a lot of feature points
for modeling environment in detail. However, when too
many feature points are extracted, the precision of camera
movement estimation deteriorates because the number of
feature points which is characteristic visually enough in
an image is limited. Then, feature points rejected as out-
lier by RANSAC increase. In other words, when there
are a lot of these points, the estimation of camera move-
ment is low precision. Therefore, we propose the method
of automatic decision on the most suitable number of the
feature points to use in measurement. We define the num-
ber of feature points to use in measurement as the number
of the feature points including the maximum number of
the outliers in the range that precision of camera motion
estimation can be high enough. From the above, we give
Eq.(7) and (8) as follows.
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ζ(k) < t (8)

whereOi is the number of the outliers when the num-
ber of extracted feature points isi, t is a given threshold,
ζ(k) is an increase of the number of the outliers when
the number of the extracted feature points changes from
k to (k + w). We can calculateζ(k) stably by settingw
adequately.

The number of the feature points that are easy to track
is different in each environment. Then, if we extract
many feature points than the suitable number, the num-
ber of the outlier increases drastically. Therefore, we cal-
culate maximumk satisfying Eq.(8) as the most suitable
number of the feature points to use in measurement.

3.5 Estimating Camera Motion
Essential matrixE is represented by rotation matrixR

and translation vectort = [tx, ty, tz]T .

E = RT (9)

Here,T is a matrix given as follows.

T =

 0 −t3 t2
t3 0 −t1
−t2 t1 0


We calculateR andT from essential matrixE by sin-

gular value decomposition.

3.6 3D Measurement

3D coordinates of an object point which is projected
as a feature point in the image are given based on trian-
gulation with two cameras set in the geometrical relation
given by rotation matrixRm and translation vectortm,
wherem is the number of measurement. We calculates
3D coordinates ofpm,i (i-th feature point) by usingRm

andtm (Fig.5).

3.7 Result Qualification

The accuracy of measurement is poorer as an object
point lies closer to the baseline direction or it lies far from
the camera. Therefore, the measurement data is a mixture
of high and low accuracy. Here, by taking the differentia-
tion of measurement resultpm,i by the image coordinates
of the two feature points[um,i, vm,i]T and[u′

m,i, v
′
m,i]

T

as the estimate of the measurement accuracy, we select
measurement results satisfying Eq.(10) and (11), where
h is a threshold.

g =
∣∣∣∣∂pm,i

∂u1,m,i

∣∣∣∣ +
∣∣∣∣∂pm,i

∂v1,m,i

∣∣∣∣ +
∣∣∣∣∂pm,i

∂u2,m,i

∣∣∣∣ +
∣∣∣∣∂pm,i

∂v2,m,i

∣∣∣∣(10)

||g|| < h (11)

3.8 Bundle Adjustment

The camera motion estimated in Section 3.5 may not
be always good results because the results don’t consider
the various errors in images. Then, we estimate the cam-
era motion in consideration of the measurement errors in
each feature point. We use bundle adjustment which is
nonlinear least squares problem by the minimization of
the sum of feature reprojection errors [14]. In calculation
of the reprojection errors, we use the result of the camera
motion estimated in Section 3.5 as initial parameter and
evaluate the measurement errors to weight the calculated
value in each feature point. The reprojection error is a
difference between the original feature point coordinate
and the reprojected coordinate. If there are few reprojec-
tion errors, the estimation of the camera motion is highly
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Fig. 5 Calculation of 3D Coordinates



precise. The coordinates of the reprojected feature points
are calculated by Eq. (12)-(14). u

v
−c + f

 = d′
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dz + 2c

 −

 0
0
−c

 (12)
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√
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b

a

)2

(x′2 + y′2) − z′2

(13)

d′ =
f

dz′ + 2c
(14)

We define the sum of the feature reprojection errors as
follows.

Ef =
∑

p

rfp

∣∣xfp − x′
fp

∣∣2 (15)

whereEf is the sum of the feature reprojection errors in
f -th frame,rfp is the weight factor forp-th feature point,
xfp is the original feature point coordinate,x′

fp is the
reprojected coordinate, respectively. The weight factor is
calculated with evaluating the error in each feature point.
The norm of the vectorg calculated by Eq.(10) evaluates
the error (Eq.(16)).

rfp =
1∥∥∥gfp

∥∥∥ (16)

wheregfp is a vector which expresses the measurement
accuracy ofp-th feature point inf -th frame. We add
larger weight to the feature points which has a small vec-
tor, namely a small error.

3.9 Result Combination and Integration
By the above procedure, we get individual measure-

ment results and the geometrical relations of observation
points by using pairs of stereo images that are selected in
the image sequence. In order to unite these measurement
results, we solve the problem of scale ambiguity among
individual measurements by scale matching [15]. How-
ever, there is a mismatching of the measurement results
because the errors included in feature points are different
between each observation point. Therefore, after scale
matching, there are more than one measurement results
which show the same object points. We should integrate
these measurement results into one object point. The in-
tegration method votes to voxels which are divided 3D
space. We decide the weight of vote value in considera-
tion of the measurement error (Eq. (16)) in each feature
point. The 3D coordinate of the object point is the coor-
dinate of the voxel which has largest vote value.

3.10 Modeling
A triangular mesh is generated from integrated mea-

surement data by using 3D Delaunay triangulation. How-
ever, Delaunay triangulation generates a triangular mesh
which contradicts a physical shape because the triangu-
lar mesh doesn’t consider the shape of the measurement
object. Therefore, we apply the triangular optimization
method [16] to the triangular mesh (Fig.6). The method

Fig. 6 Triangular Mesh Optimization

adapts the triangular mesh to physical shape by detecting
a texture distortion. By texture mapping to the triangular
mesh, a 3D environment model is constructed. By texture
mapping to the triangular mesh, a 3D environment model
is constructed.

4. EXPERIMENT

In the experiment we measured two environments
(Fig.7(a) a passageway including an L-shape corner, (b)
a room). We acquired an image sequence (5 fps) of a pas-
sageway by using an omni-directional camera installed to
a mobile robot. The robot ran with 10 cm/s. We acquired
an image sequence (10 fps) of a room by using the cam-
era which a walking person has. The sizes of these image
sequences are 1920× 1080 pixels.

Figure 8 shows the top view of combined measure-
ment result of a passageway. The blue marks in this re-
sult show the trajectory of the robot. The red marks in
this result show measurement data. The result with our
proposed method (a) (Section 3.3, 3.4, 3.7, 3.8) is higher
precision than the result without the method (b), because
of the accuracy of the passageway shape.

Figure 9 shows the bird’s-eye view of 3D environment
model of a passageway. Figure 10 shows the detail view
of 3D environment model. Because there are little tex-
ture distortions in the model, the result shows that our
proposed method can construct a model which doesn’t
contradict physical shape of measurement object.

Figure 11 shows the top view of combined measure-
ment result of a room. Our proposed method rejects mea-
surement results which are low precision.

Figure 12 shows various views of 3D environment
model of a room. We can recognize object shape in an
arbitrary viewpoint. The result shows that our proposed
method can measure shape of objects in detail.

5. CONCLUSION

In this paper, we propose a method which estimates
camera motion more precisely. We apply the triangular
optimization method which adapts the triangular mesh to
physical shape by detecting a texture distortion. Exper-
imental results showed the effectiveness of the proposed
method.

As future works, we should make the following im-
provements. For measurement accuracy, the camera mo-
tion should be estimated by consideration of more than
three observation points. For appearance of an environ-
ment model, we must use the texture mapping method
that considered the distortion of an omni-directional im-
age.
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