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Abstract— Map information is important for path plan-
ning and self-localization when mobile robots accomplish
autonomous tasks. In unknown environments, mobile robots
should generate an environment map by themselves. Then, we
propose a method for 3D environment modeling by a mobile
robot. For environmental measurement, we use a single omni-
directional camera. We propose a new estimation method of
camera motions for improvement in measurement robustness
and accuracy. The method takes advantage of a wide field
of view of an omni-directional camera. Experimental results
showed the effectiveness of the proposed method.

I. INTRODUCTION

Map information is important for path planning and self-
localization when mobile robots accomplish autonomous
tasks. Therefore, in unknown environment, mobile robots
should construct an environment map by themselves.

3D measurement using image data makes it possible to
generate map information [1]. However, an image acquired
by a conventional camera has a limited field of view [2].
To solve this problem, such cameras with a wide field of
view have been invented as a fisheye camera [3], an omni-
directional camera [4] [5] and so on. Taking account of
installation on a mobile robot, an omni-directional camera
is suitable because it can get a surrounding view image at
once. Gluckman showed that an omni-directional camera is
effective in measurement and recognition in environment [6].

A stereo vision method using two omni-directional cam-
eras is proposed [7]. The measurement accuracy by stereo
vision depends on the baseline length. The longer the base-
line length is, the better the accuracy is. However, the mea-
surement accuracy of the above method is limited because
the baseline length cannot be longer than the robot size. A
motion stereo method using stereo pair images which are
taken with a single camera at different observation points is
equivalent to binocular stereo vision. This method can make
the baseline length longer without restriction of the robot size
[8]. Therefore, the method can measure with higher accuracy
than binocular stereo method.

Measurement accuracy can be expected to be higher by
using a sensor fusion method using laser [9], GPS [10] or
sonar [11] with an omni-directional camera. However, there
are some problems that measurement objects and situations
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are limited and that complexity of calibration process for
each device increases.

Therefore, we use a single omni-directional camera for en-
vironmental measurement. The structure from motion (SFM)
is a kind of motion stereo method. The SFM estimates
camera motions (the relative relations of camera positions
and orientations), and then measures objects in images. We
have already proposed a measurement method based on the
SFM [12]. Our method extracts and tracks feature points
to get corresponding points in an omni-directional image
sequence. By using position relations of the corresponding
points, the method estimates camera motions and measures
its environment. A triangular mesh is generated from mea-
surement data. By texture-mapping, a 3D environment model
is constructed.

Estimation of precise camera motion is important for
improvement of the accuracy in measurement by the SFM.
Then, we propose a method which estimates precise camera
motions by taking advantage of an entire field of view of
omni-directional camera.

II. OUTLINE

A mobile robot executes 3D measurement and modeling
by using an omni-directional camera (Fig. 1). The mobile
robot acquires an omni-directional image sequence during
its locomotion.

The process of our method is shown in Fig. 2. It extracts
and tracks feature points to get corresponding points in an
omni-directional image sequence. By using the positions
of corresponding points in two images taken at different
observation points, we estimate camera motions with a
Feature Flow Model we propose. 3D coordinates of object
points are calculated by triangulation with camera motions
and image coordinates of feature points. In order to de-
crease accumulated errors, we minimize errors in feature
point coordinates and camera motions by bundle adjustment.

Omni-directional camera

Mobile robot

Fig. 1. Mobile Robot and Omni-Directional Image
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Fig. 3. Feature Extract and Tracking

Finally, the individual measurement data of feature points are
integrated as one 3D measurement data.

III. ALGORITHM

A. Corresponding Point Acquisition

For getting correspondent points between images in the
omni-directional image sequence, the method extracts feature
points in the initial image and then tracks them along the
sequence. In our method, we use Lucas Kanade tracker
algorithm with image pyramid representation [13] (Fig. 3).

These points are regarded as corresponding points between
two images taken before and after the robot movement.

B. Ray Vector Calculation

We define a unit vector originating from the center of
projection to an object point in 3D space as a ray vector r =
[x,y,z]T , where T stands for transposition of vector or matrix.
An omni-directional camera we use has a hyperboloid mirror
in front of the lens of a conventional camera. Therefore, as
shown in Fig. 4, ray vector r is directed from the focus of
the hyperboloid mirror to the reflection point of the ray on
the mirror surface.

Ray vector r is calculated from image coordinates [u,v]T

of the feature point using (1), (2).
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In thess equations, a, b and c are the hyperboloid parameters
and f is the image distance which is the distance between a
center of a lens and the image plane.
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Fig. 4. Calculation of Ray Vector

C. Camera Motion and Feature Point Movement

In the case of using a conventional camera, its field of
view is restricted to a narrow area around the optical axis.
For this reason, there is not much difference in feature point’s
movement in images between translation and rotation of the
camera (Fig. 5) in several cases. Though these cases do not
always happen in general, but they often happen in actual
situations. Therefore, it may be difficult to estimate camera
motion by analyzing movement of feature points in images.

On the other hand, in the case of using omni-directional
camera which has 360 degree field of view, we can specif-
ically discriminate between translation and rotation of the
camera by analyzing movement of feature points (Fig. 6).

Then, we propose an estimation method of camera motions
by utilizing a difference in feature point movement between
camera rotation and translation.

D. Camera Motion Estimation with Feature Flow Model

Our method defines a unit sphere for camera motion
estimation. The center of this unit sphere represents the
starting points of each ray vector and a camera translation
vector. These vectors are unit vectors. Rotation axes of
camera motions pass through the center of the unit sphere. A
relation between ray vectors r1, r2, camera translation vector

Feature Flow

(a) Translation (b) Rotation

Fig. 5. Feature Flow (Conventional Camera)

(a) Translation (b) Rotation

Fig. 6. Feature Flow (Omni-Directional Camera)



t, camera rotation axis and angle displacements is described
below.

In the case of camera translation, a translation vector is in
a plane which consists of two ray vectors rt1, rt2 acquired
before and after camera movement. Therefore, a normal
vector of this plane given by (3) is orthogonal to a translation
vector (Fig. 7 (a)), and this leads to (4).

n = rt1 × rt2 (3)

n · t = 0 (4)

In the case of camera rotation, ray vector’s displacements
are constant angle displacement in a plane which is orthog-
onal to a rotation axis. Here, a relation between two ray
vectors rt1 and rt2 is described by (5) using a rotation matrix
(Fig. 7 (b)).

rR1 = R−1rR2 (5)

In the case of both translation and rotation, a relation
between two ray vectors r1 and r2 acquired before and after
camera movement can be described by the combination of
these displacements. In this unit sphere, these displacements
are independent of each other. Therefore, we can deal with
this case as well as the case of translation by removing
rotation displacements from the combination of two displace-
ments.

Then, we can describe camera motions by following (6).(
r1 ×R−1r2

) · t = 0 (6)

Here, there are two solutions for the translation vector
and the rotation matrix which satisfy (6), respectively. In
the translation vector, one of the solution is the correct
translation vector t which describes camera motion. The
other solution is the vector in the reverse direction of the
correct translation vector (reverse translation vector). In the
rotation matrix, one of the solution is the correct rotation
matrix R which describes camera motion. The other solution
is the rotation matrix which rotates 180 degrees from the
correct rotation matrix around the translation vector. So,
we should determine which is correct between these two
solutions, respectively.

Our method solves the problem by applying two con-
straint conditions. One of the constraint conditions is that
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Fig. 7. Feature Flow Model

displacements of ray vectors are in the direction from the
end point of the correct translation vector (positive pole)
to the end point of the reverse translation vector (negative
pole). This constraint condition decides the direction of the
correct translation vector. The other constraint condition is
that displacements of ray vectors do not cross over the
positive pole or the negative pole. This constraint condition
decides the correct rotation matrix.

When the rotation matrix and the translation vector satisfy
these constraint conditions, ray vectors satisfy (7) geometri-
cally (Fig. 8).

q1 ·q2 < 0 ∩ q′
1 ·q′

2 < 0 (7)

where

q1 = R−1r2 − r1, q2 = t− r1, q′
1 = −q1, q′

2 = −t−R−1r2.

This equation means that both the angle between vector q1
and vector q2 and the angle between vector q′

1 and vector
q′

2 are obtuse.
Our method estimates the rotation matrix and the transla-

tion vector which satisfy both (6) and (7) for all the pairs of
ray vectors r1,i and r2,i by minimizing the amount E given
by (8) and (9).

ei =
{ ∣∣(r1 ×R−1r2

) · t∣∣ if (7) is satisfied
1 else

(8)

E = ∑
i

ei (9)

This method we propose is based on a model which has
uniform flow of ray vector’s displacements on a unit sphere.
So, we call the model of the unit sphere a Feature Flow
Model (FFM).

E. 3D Measurement

3D coordinates of an object point which is projected as a
feature point in the image are given based on triangulation
with two cameras set in the geometrical relation given by
rotation matrix Rm and translation vector tm, where m is the
number of measurement. We calculate 3D coordinates of pm,i

(i-th feature point) by using Rm and tm (Fig. 9).

Ray Vector

Translation Vector

Fig. 8. Constraint Condition



F. Result Qualification

The accuracy of measurement is lower when an object
point lies close to the baseline direction or it lies far from
the camera. Therefore, the measurement data is a mixture of
high and low accuracy. Here, by taking the differentiation
of measurement result pm,i by the image coordinates of the
two feature points [um,i,vm,i]T and [u′m,i,v

′
m,i]

T as the estimate
of the measurement accuracy, we select measurement results
satisfying (10) and (11), where h is a threshold.

gm,i =

∣∣∣∣∣
∂pm,i

∂u1,m,i

∣∣∣∣∣+
∣∣∣∣∣
∂pm,i

∂v1,m,i

∣∣∣∣∣+
∣∣∣∣∣
∂pm,i

∂u2,m,i

∣∣∣∣∣+
∣∣∣∣∣
∂pm,i

∂v2,m,i

∣∣∣∣∣ (10)

||gm,i|| < h (11)

G. Result Integration

By the above procedure, we get individual measurement
results and the geometrical relations of observation points by
using pairs of the images selected from the image sequence.
In order to unite these measurement results, we solve the
problem of scale ambiguity among individual measurements
by scale matching [14]. However, there is a mismatching
of the measurement results because the errors included in
feature points are different between each observation point.

Therefore, after scale matching, there are more than two
measurement results which show the same object point. We
integrate these measurement results into one object point by
voting to voxels which are divided in 3D space. The 3D
coordinates of the object point are the coordinates of the
voxel which has the largest value.

H. Minimization of Accumulated Error

The camera motion estimated in Section 3.4 includes
some errors. These measurement errors are accumulated after
result integration (Section III–G). For the solution of the
problem, Bundle adjustment is known as a minimization
method of accumulated errors [15]. To decrease accumulated
errors, our method minimizes the errors between the ray
vectors calculated by (1) and the vectors whose direction is
given by the 3D coordinates of the feature point (reprojected
vector). The reprojected vector is calculated by (12) and (13).

r′1,m,i = Rm−1

(
pi − cm−1

)
(12)

r′2,m,i = Rm (pi − cm) (13)

Here, cm is the camera positions at the observation point m.
Rm is the rotation matrix at the observation point m. We
define the accumulated error as follows.
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Fig. 9. Calculation of 3D Coordinates

εm = ∑
i

wm,i

(‖r1,m,i − r′1,m,i‖2 +‖r2,m,i − r′2,m,i‖2) (14)

where εm is the accumulated errors in m-th frame, wm,i is
the weight factor for i-th feature point, rm,i is the ray vector,
r′m,i is the reprojected vector. wm,i is The weight factor which
evaluates the measurement error by using the norm of the
vector gm,i calculated by (10). The weight factor wm,i is
calculated by (15).

wm,i =
1

‖gm,i‖
(15)

I. Modeling

A triangular mesh is generated from integrated measure-
ment data by using 3D Delaunay triangulation. But, the
Delaunay triangulation generates a triangular mesh which
contradicts a physical shape because the triangular mesh
does not consider the shape of the measurement object.
Therefore, we apply the triangular optimization method [16]
to the triangular mesh. The method adapts the triangular
mesh to the physical shape by detecting a texture distortion.
Here, generated triangular mesh includes patches which are
blind spots of the camera, for example, the ceiling and the
floor. Therefore, we remove these patches by using estimated
camera poses. By texture mapping to the triangular mesh, a
3D environment model is constructed.

IV. EXPERIMENT

We evaluated the accuracy of camera motion estimation by
using an omni-directional camera equipped on a manipulator.
We regard a manipulator movement as the true value of
camera motion. We made the manipulator trace a square. We
estimated camera motion 4 times between each apex of the
square. The end position of the camera is same as the starting
position. The length of the square side is 350 millimeters.

In this experiment, we compared FFM with the eight-point
algorithm. To show the profitability of our method, we did
not remove outliers included in corresponding points we got
in Section III–A. Figure 10 shows the result of camera motion
estimation. Camera positions A, B, C, D and E correspond
to apexes of the square which is traced by the manipulator.

In the result of the eight-point algorithm (Fig. 10 (a)), the
end position E is far from the starting position A. In the
result by a FFM (Fig. 10 (b)), the end position E is close to
the starting position (Table I), where we define the distance

A

B

C

D

E

A

B

C

D

E

(a) Eight-Point Algorithm (b) FFM

Fig. 10. Result of Camera Motion Estimation



TABLE I

RESULT OF CAMERA MOTION ESTIMATION 1

Eight-Point Algorithm FFM
X Y Z X Y Z

A 0 0 0 0 0 0
B -0.997 0.075 -0.030 -0.998 0.063 -0.030
C -1.039 0.053 0.932 -1.024 0.018 0.969
D -0.140 -0.527 0.981 -0.039 -0.054 0.997
E -0.049 -0.419 0.028 -0.016 -0.005 0.030

A–E
Distance 0.422 0.035

TABLE II

RESULT OF CAMERA MOTION ESTIMATION 2

Eight-Point Algorithm FFM
θ1 [deg] 89.3 90.4
θ2 [deg] 88.7 89.7
θ3 [deg] 91.6 90.5
θ4 [deg] 93.2 89.4

Average [deg] 90.7 90.0
Variance [deg2] 3.23 0.187

Standard Variance [deg] 1.80 0.432
Maximum Error [deg] 3.2 0.5

between A and B is 1 because scale information is unknown
in our method. In addition, the result by a FFM has higher
accuracy of camera movement direction than the result of
the eight-point algorithm (Table II).

Fig. 11 shows the measurement result around the camera.
The blue marks in this result show the trajectory of the
camera. The green, yellow, orange and red marks show each
measurement data at 4 observation points. The measurement
result by a FFM has smaller variance between each mea-
surement result than the result of the eight-point algorithm.
These results show that our proposed method by a FFM can
estimate with higher accuracy than the eight-point algorithm.

We construct a model of an actual environment by mea-
surement method based on a FFM by using a mobile robot
which equips an omni-directional camera. In the experiment
we measured two environments (Fig. 12 (a) a passageway
including an L-shape corner, (b) a room). We acquired an
image sequence (10 fps) of these environments by using a
mobile robot. The robot ran with 100 mm/s. The image size
is 1920×1080 pixels.

Fig. 13 shows the top view of combined measurement
result of the passageway and the room. The blue marks in
this result show the trajectory of the robot. The red marks in
this result show the measurement data. These results show
that our method can measure the shape of the passageway

(a) Eight-Point Algorithm (b) FFM

Fig. 11. Measurement Result of Camera Motion Estimation

(a) Passageway (b) Room

Fig. 12. Experiment Environment

(a) passageway (b) room

Fig. 13. Integrated Measurement Data

and the room.
Fig. 14 and 16 show the 3D environment models of the

passageway and the room. Figure 15 and 17 show other views
of these 3D environment models. These results show that our
proposed method constructs models which have the shape of
measurement object.

V. CONCLUSION

In this paper, we propose a method which estimates
camera motions precisely by taking advantage of the wide
field of view of an omni-directional camera. Experimental
results show the effectiveness of our proposed method.

As future works, we should make the following improve-
ments. For measurement accuracy, the baseline length should
be optimized by considering the measurement result at each
observation point. For appearance of the environment model,
we should estimate the shape of measurement objects in
the environment from the relation between the measurement
result and the texture appearance at each observation point.
Moreover, the present experimental environments are not
very large. Therefore, we should experiment in large environ-
ments, such as outdoors. Further, we should compare other
methods which use SIFT[17] feature, SURF[18] feature and
so on.

Fig. 14. Environment Model of the Passageway
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Fig. 15. Detail View of the Passageway Model

Fig. 16. Environment Model of the Room
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