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NOMENCLATURE 

 

a, b, c = parameter of hyperboloid mirror 

f = image distance 

r = ray vector 

R = Rotation matrix 

t = translation vector 

g = error vector 

c = camera position 

 

1. Introduction 
Map information is important for path planning and self-

localization when mobile robots accomplish autonomous tasks. 

Therefore, in unknown environment, mobile robots should construct 

an environment map by themselves.  

3D measurement using image data makes it possible to generate 

map information [1]. However, an image acquired by a conventional 

camera has a limited field of view [2]. To solve this problem, such 

cameras with a wide field of view have been invented as a fisheye 

camera [3], an omni-directional camera [4] [5] and so on. Taking 

account of installation on a mobile robot, an omni-directional camera 

is suitable because it can get a surrounding view image at once. 

Gluckman and Nayer showed that an omni-directional camera is 
effective in measurement and recognition in environment [6]. 

A stereo vision method using two omni-directional cameras is 

proposed [7]. The measurement accuracy by stereo vision depends on 

the baseline length. The longer the baseline length is, the better the 

accuracy is. However, the measurement accuracy of the above 

method is limited because the baseline length cannot be longer than 

the robot size. A motion stereo method using stereo pair images which 

are taken with a single camera at different observation points is 

equivalent to binocular stereo vision. This method can make the 

baseline length longer without restriction of the robot size [8]. 

Therefore, the method can measure with higher accuracy than 

binocular stereo method. 

Measurement accuracy can be expected to be higher by using a 

sensor fusion method using laser [9], GPS [10] or sonar [11] with an 

omni-directional camera. However, there are some problems that 

measurement objects and situations are limited and that complexity of 

calibration process for each device increases. 

Therefore, we use a single omni-directional camera for 

environmental measurement. The structure from motion (SFM) is a 

kind of motion stereo method. The SFM method estimates camera 

movement (the relative relations of camera positions and orientations), 

and then measures objects in images. We have already proposed a 

measurement method based on the SFM [12]. Our method extracts 

and tracks feature points to get corresponding points in an omni-

directional image sequence. By using position relations of the 

corresponding points, the method estimates camera movement and 

measures its environment. A triangular mesh is generated from 

measurement data. By texture-mapping, a 3D environment model is 

constructed. 

Estimation of precise camera movement is important for 

improvement of the accuracy in measurement by the SFM. Then, we 

propose a method which estimates precise camera movement by 

taking advantage of an entire field of view of omni-directional camera.  

 

2. Outline 
A mobile robot executes 3D measurement and modeling by using 

an omni-directional camera (Fig.1). The mobile robot acquires an 

omni-directional image sequence during its locomotion. 

The process of our method is shown in Fig.2. It extracts and 

tracks feature points to get corresponding points in an omni-

directional image sequence. By using the positions of corresponding 

points in two images taken at different observation points, we 

estimate camera movement with a feature flow model we propose. 

3D coordinates of object points are calculated by triangulation with  
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Fig.1 Mobile Robot with Omni-Directional Camera 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 Proposed Flow 
 
camera movement and image coordinates of feature points. In order 

to decrease accumulated errors, we minimize errors in feature point 

coordinates and camera movement by bundle adjustment. Finally, the 

individual measurement data of feature points are integrated as one 

3D measurement data. 

 

3 Environment Measurement 
3.1 Corresponding Point Acquisition 

For getting correspondent points between images in the omni-

directional image sequence, the method extracts feature points in the 

initial image and then tracks them along the sequence. In our method, 

we use Lucas Kanade tracker algorithm with image pyramid 

representation [13] (Fig.3). These points are regarded as 

corresponding points between two images taken before and after the 

robot movement. 

 

3.2 Ray Vector Calculation 

We define a unit vector originating from the center of projection 

to an object point in 3D space as a ray vector r = [x, y, z]T, where T 

stands for transposition of vector or matrix. An omni-directional 

camera we use has a hyperboloid mirror in front of the lens of a 

conventional camera. Therefore, as shown in Fig.4, ray vector r is 

directed from the focus of the hyperboloid mirror to the reflection 

point of the ray on the mirror surface.  

Ray vector r is calculated from image coordinates (u, v) of the 

feature point using (1), (2). 
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Fig.3 Feature Point Extraction and Tracking 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4 Calculation of Ray Vector 
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In these equations, a, b and c are the hyperboloid parameters and f 

is the image distance which is the distance between a center of a lens 

and the image plane. 

 

3.3 Camera Movement Estimation 

3.3.1 Feature Point Movement 

In the case of using a conventional camera, its field of view is 

restricted to a narrow area around the optical axis. For this reason, 

there may be not much difference in feature point's movement in 

images between translation and rotation of the camera (Fig.5(a)). 

Therefore, in that case, it is difficult to estimate camera movement by 

analyzing movement of feature points in images. 

On the other hand, in the case of using omni-directional camera 

which has 360 degree field of view, we can specifically discriminate 

between translation and rotation of the camera by analyzing 

movement of feature points in any cases (Fig.5(b)). 

Then, we propose an estimation method of camera movement by 

utilizing a difference in feature point movement between camera 

rotation and translation. 

 

3.3.2 Feature Flow Model 

Our method defines a unit sphere for camera movement 

estimation. The center of this unit sphere represents the starting points 

of each ray vector and a camera translation vector. These vectors are 

unit vectors. Rotation axes of camera movement pass through the 

center of the unit sphere. A relation between ray vectors r1, r2, camera 

translation vector t, camera rotation axis and angle displacements is 

described below. 

In the case of camera translation, a translation vector is in a plane 

which consists of two ray vectors rt1, rt2 acquired before and after 

camera movement. Therefore, a normal vector of this plane given by 

(3) is orthogonal to a translation vector (Fig.6(a)), and this leads to (4). 

 

 

 

 

 

 

 

 

(a) Conventional Camera 

 

 

 

 

 

 

(b) Omni-Directional Camera 

Fig.5 Feature Flow 
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(a) Translation                  (b) Rotation 

Fig.6 Feature Flow Model 
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In the case of camera rotation, ray vector's displacements are 

constant angle displacement in a plane which is orthogonal to a 

rotation axis. Here, a relation between two ray vectors rR1 and rR2 is 

described by (5) using a rotation matrix (Fig.6(b)). 
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In the case of both translation and rotation, a relation between two 

ray vectors r1 and r2 acquired before and after camera movement can 

be described by the combination of these displacements. In this unit 

sphere, these displacements are independent of each other. Therefore, 

we can deal with this case as well as the case of translation by 

removing rotation displacements from the combination of two 

displacements. 

Then, we can describe camera movement by following (6). 

( ) 02
1

1 =⋅× − trRr     (6) 

Here, there are two solutions for the translation vector and the 

rotation matrix which satisfy (6), respectively. In the translation 

vector, one of the solutions is the correct translation vector t which 

describes camera movement. The other solution is the vector in the 

reverse direction of the correct translation vector (reverse translation 

vector). In the rotation matrix, one of the solutions is the correct 

rotation matrix R which describes camera movement. The other 

solution is the rotation matrix which rotates 180 degrees from the 

correct rotation matrix around the translation vector. Then, we should 

determine which is correct between these two solutions, respectively. 

Our method solves the problem by applying two constraint 

conditions. One of the constraint conditions is that displacements of 

ray vectors are in the direction from the end point of the correct 

translation vector (positive pole) to the end point of the reverse 

translation vector (negative pole). This constraint condition decides 

the direction of the correct translation vector. The other constraint 

condition is that displacements of ray vectors do not cross over the 

positive pole or the negative pole. This constraint condition decides 

the correct rotation matrix. 

When the rotation matrix and the translation vector satisfy these 

constraint conditions, ray vectors satisfy (7) geometrically (Fig.7). 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Fig.7 Constraint Condition 
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This equation means that both the angle between vector q1 and 
vector q2 and the angle between vector q'1 and vector q'2 are obtuse. 

Our method estimates the rotation matrix and the translation 

vector which satisfy both (6) and (7) for all the pairs of ray vectors r1,i 

and r2,i by minimizing the amount E given by (8) and (9). 
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This method we propose is based on a model which has uniform 

flow of ray vector's displacements on a unit sphere. Here, we call the 

model of the unit sphere a feature flow model (FFM). 

 

3.4 3D Measurement 

3D coordinates of an object point which is projected as a feature 

point in the image are given based on triangulation with two cameras 

set in the geometrical relation given by rotation matrix Rm and 

translation vector tm, where $m$ is the number of measurement. We 

calculate 3D coordinates of pm,i (i-th feature point) by using Rm and tm 

(Fig.8). 

The accuracy of measurement is lower when an object point lies 

close to the baseline direction or it lies far from the camera. Therefore, 

the measurement data is a mixture of high and low accuracy. Here, by 

taking the differentiation of measurement result pm,i by the image 

coordinates of the two feature points [u1,m,I, v1,m,i]
T and [u2,m,I, v2,m,i]

T 

as the estimate of the measurement accuracy, we select measurement 

results satisfying (10) and (11), where h is a threshold. 
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3.5 Result Integration 

By the above procedure, we get individual measurement results 

and the geometrical relations of observation points by using pairs of 

stereo images that are selected in the image sequence. In order to 

unite these measurement results, we solve the problem of scale 

ambiguity among individual measurements by scale matching [14]. 

However, there is a mismatching of the measurement results because 

the errors included in feature points are different between each 

observation point.  

Therefore, after scale matching, there are more than two 

measurement results which show the same object point. We integrate 

these measurement results into one object point by voting to voxels 

which are divided in 3D space. The 3D coordinates of the object point 

are the coordinates of the voxel which has the largest value. 

 

3.6 Minimization of Accumulated Error 

The camera movement estimated in section 3.4 includes some 

errors. These measurement errors are accumulated after result 

integration (section 3.5). For the solution of the problem, Bundle 

adjustment is known as a minimization method of accumulated errors 

[15]. 

 

 

 

 

 

 

 

 

 

Fig.8 Calculation of 3D Coordinates 
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To decrease accumulated errors, our method minimizes the errors 

between the ray vectors calculated by (1) and the vectors whose 

direction is given by the 3D coordinates of the feature point 

(reprojected vector). The reprojected vector is calculated by (12) and 

(13). 

( )11,,1' −− −= mimim cpRr    (12) 

( )mimim cpRr −=,,2'     (13) 

Here, cm is the camera locations at the observation point m. Rm is the 
rotation matrix at the observation point m. We define the accumulated 
error as follows. 
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where εm is the accumulated errors in m-th frame, wm,i is the weight 

factor which evaluates the measurement error by using the norm of 
the vector gm,i calculated by (10) for i-th feature point, rm,i is the ray 
vector, r'm,i is the reprojected vector. The weight factor wm,i is 
calculated by (15). 
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3.7 Modeling 

A triangular mesh is generated from integrated measurement data 

by using 3D Delaunay triangulation. But, the Delaunay triangulation 

generates a triangular mesh which contradicts a physical shape 

because the triangular mesh does not consider the shape of the 

measurement object. Therefore, we apply the triangular optimization 

method [16] to the triangular mesh. The method adapts the triangular 

mesh to the physical shape by detecting a texture distortion. By 

texture mapping to the triangular mesh, a 3D environment model is 

constructed. 

 

4 Experiments 
We construct a model of an actual environment by measurement 

method based on a FFM by using a mobile robot which equips an 

omni-directional camera. In the experiment we measured two 

environments (Fig.9 (a) a passageway including an L-shape corner, 

(b) a room). We acquired an image sequence (10 fps) of these 

environments by using a mobile robot. The robot ran with 100 mm/s. 

The image size is 1920×1080 pixels. 

Figure 10 shows the bird’s-eye view and the top view of 

combined measurement result of the passageway and the room. The 

marks in these results show the 3D coordinates of camera’s trajectory 

and corresponding points. In these figures, the color change shows the 

change of the observation point. The blue marks show the result 

measured at the initial observation point. The red marks show the 

result measured at the end of observation point. The result of the 

passageway shows that our method can measure the L-shape corner. 

But we cannot measure the room in detail, because the measurement 

result of the room is sparse. It is our assignment. 

 

 

 

 

 

 

 

(a) Passageway (left: Actual Image, right: Input Image) 

 

 

 

 

 

 

(b) Room (left: Actual Image, right: Input Image) 

Fig.9 Experimental Environment 

 

 

 

 

 

 

 

 

 

 

 

(a) Bird’s-eye View of Measurement Result of Passageway 

 

 

 

 

 

 

 

 

 

 

 

(b) Top View of Measurement Result of Passageway 

 

 

 

 

 

 

 

 

 

 

 

 

(c) Bird’s-eye View of Measurement Result of Room 

 

 

 

 

 

 

 

 

 

 

(d) Top View of Measurement Result of Room 

Fig.10 Measurement Results 

 

Figures 11 and 12 show the 3D environment models of the 

passageway and the room. Figure 11 shows that our proposed method 

can construct a model which has the shape of the passageway. But the 

room model has much texture distortion because the density of the 

measurement result is not enough and the result includes imprecise 

measurement points. 

 

5 Conclusions 
In this paper, we propose a method which estimates camera 

movement precisely by taking advantage of the wide field of view of 

an omni-directional camera. Experimental results show the 

effectiveness of our proposed method. 

As future works, we should make the following improvements. 

For measurement accuracy, the baseline length should be optimized 

by considering the measurement result at each observation point. For 

appearance of the environment model, we should estimate the shape 

of measurement objects in the environment from the relation between 

the measurement result and the texture appearance at each 

observation point. 
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(a) Front View 
 
 
 
 
 
 
 
 
 
 
 

(b) Right View 

 
 
 
 
 
 
 
 
 
 
 

(c) Left View 

Fig.12 3D Environment Model of Room 

 
REFERENCES 
 
1. A. J. Davison: “Real-Time Simultaneous Localisation and Mapping 

with a Single Camera”, Proceedings of the 9th IEEE International 

Conference on Computer Vision, Vol. 2, pp. 1403-1410, 2003. 

2. H. Ishiguro, M. Yamamoto and S. Tsuji: “Omni-Directional Stereo”, 

IEEE Transactions on Pattern Analysis and Machine Intelligence, 

Vol. 14, No. 2, pp. 257-262, 1992. 

3. T. Nishimoto, J. Yamaguchi: “Three Dimensional Measurement 

Using Fisheye Stereo Vision”, Proceedings of the Society of 

Instrument and Control Engineers Annual Conference 2007, 3A05-

1, pp. 2008-2012, 2007. 

4. R. Bunschoten and B. Krose: “Robust Scene Reconstruction from 

an Omnidirectional Vision System”, IEEE Transactions on 

Robotics and Automation, Vol. 19, No. 2, pp. 351-357, 2003. 

 

 

 

 

 

 

 

 

 

 

5. C. Geyer and K. Daniilidis: “Omnidirectional Video”, The Visual 

Computer, Vol. 19, No. 6, pp. 405-416, 2003. 

6. J. Gluckman and S. K. Nayar: “Ego-motion and Omnidirectional 

Cameras”, Proceedings of the 6th International Conference on 

Computer Vision, pp. 999-1005, 1998. 

7. J. Takiguchi, M. Yoshida, A. Takeya, J. Eino and T. Hashizume: 

“High Precision Range Estimation from an Omnidirectional Stereo 

System”, Proceedings of the 2002 IEEE/RSJ International 

Conference on Intelligent Robots and Systems, pp. 263-268, 2002. 

8. M. Tomono: “3-D Localization and Mapping Using a Single 

Camera Based on Structure-from-Motion with Automatic Baseline 

Selection”, Proceedings of the 2005 IEEE International Conference 

on Robotics and Automation, pp. 3353-3358, 2005. 

9. J. Meguro, T. Hashizume, J. Takiguchi and R. Kurosaki: 

“Development of an Autonomous Mobile Surveillance System 

Using a Network-based RTK-GPS”, Proceedings of the 2005 IEEE 

International Conference on Robotics and Automation, pp. 3107-

3112, 2005. 

10. J. Meguro, Y. Amano, T. Hashizume and J. Takiguchi: “Omni-

Directional Motion Stereo Vision Based on Accurate GPS/INS 

Navigation System”, Proceedings of the 2nd Workshop on 

Integration of Vision and Inertial Sensors, 2005. 

11. S. Wei, Y. Yagi and M. Yachida: “Building Local Floor Map by 

Use of Ultrasonic and Omni-Directional Vision Sensor”, 

Proceedings of the 1998 IEEE International Conference on 

Robotics and Automation, pp. 2548-2553, 1998. 

12. R. Kawanishi, A. Yamashita, T. Kaneko: “Construction of 3D 

Environment Model from an Omni-Directional Image Sequence”, 

Proceedings of the 3rd Asia International Symposium on 

Mechatronics, TP1-3(2), pp. 1-6, 2008. 

13. J. Y. Bouguet: “Pyramidal Implementation of the Lucas Kanade 

Feature Tracker Description of the Algorithm”, OpenCV, Intel 

Corporation, 2000. 

14. T. Harada, A. Yamashita and T. Kaneko: “Environment 

Observation by Structure from Motion with an Omni-directional 

Camera”, Proceedings of International Workshop on Advanced 

Image Technology 2006, pp. 169-174, 2006. 

15. B. Triggs, P. McLauchlan, R. Hartley and A. Fitzgibbon: “Bundle 

Adjustment -A Modern Synthesis”, Vision Algorithms: Theory & 

Practice, Springer-Verlag LNCS 1883, 2000. 

16. A. Nakatsuji, Y. Sugaya and K. Kanatani: “Optimizing a 

Triangular Mesh for Shape Reconstruction from Images”, IEICE 

Transactions on Information and Systems, Vol. E88-D, No. 10, pp. 

2269-2276, 2005. 

Fig.11 3D Environment Model of Passageway 

(c) Wall 2 

(b) Wall 1 

Wall 2 

Wall 1 

(a) Bird’s-eye View 


