
Robot Motion Planning Utilizing Local Propagation of Information
Based on Particle Swarm and Its Internal Parameters

Gakuto Masuyama, Atsushi Yamashita, Hajime Asama

Abstract— A new artificial potential field method for motion
planning of mobile robot is developed in this paper. As a
reactive motion of robot, a feedback oriented to the contour
of repulsive potential function is applied with the ordinal
attractive and repulsive component. Furthermore, inspired by
Particle Swarm Optimization, particles as simplified virtual
robots are utilized for motion planning. Each particle searches
the space and transmit information regarding local stable region
to the swarm, namely, the robot and other particles. Internal
parameters of the robot and particles are also introduced to
adjust the propagation of information locally gained. Simulation
results demonstrate the robustness of proposed method against
the complexity of an environment.

I. INTRODUCTION

Online robot motion planning is an important research
issue for autonomous robots operated in an unknown or un-
predictable environment. In real time autonomous navigation
problem, robot must be capable of avoiding obstacles and
reaching destination from initial state in a finite time interval.
Enormous research has been developed and present robot
navigation methods would be classified into two categories
(or their combination). That is, global path planning and local
reactive motion generation [4].

In global methods, environment is assumed to be com-
pletely known and the path is optimized in accordance with
the whole map information [10] [11]. Derived path can lead
the robot to the destination in a refined way. Furthermore,
the path is collision and deadlock free, but they often require
enormous computational cost and do not consider dynamics
of robot. Therefore it might be ill-suited to adopt global
method and recompute optimized path for each variation of
a dynamic environment.

On the other hand, a whole environmental information
does not utilized in local methods [2] [8]. Although the
motion of robot is not necessarily optimal, local methods
can be recomputed fast. In time varying and unpredictable
environment, a capability to modify motion strategy rapidly
is one of the most fundamental specifications. The motion
of robot should be determined by the trade-off between
destination oriented stretegy and collision avoidance oriented
strategy. So a whole path efficiency depends the balance of
strategies and therefore it is desirable for robot system to be
able to recompute the motion at least in a comparable time
interval with environmental change.
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However, local methods has potential problem to get stuck
in trap situations like U-shape obstacles. It is difficult to
guarantee the global asymptotic stability in principle because
the motion is computed by limited environmental information
in limited time/spatial terrain. In this paper, we approach this
problem through search actions of simplified virtual agents.
Internal parameter of each agents entail social signal and the
motion of robot is decided by sensory input and the spatially
propagated information.

In the sequel, related works are discussed in Section II,
and proposed method is presented in Section III. Simulation
results are shown in Section IV. Finally, discussion and
conclusion are summarized in Section V.

II. RELATED WORKS

Proposed method is constructed based on artificial poten-
tial field method. And ideas conceived by Particle Swarm
Optimization is utilized to deal with some problems of
artificial potential field method. In this section, artificial
potential field method and Particle Swarm Optimization are
briefly reviewed with the objective of robot motion planning.

A. Artificial Potential Field Method

Artificial Potential Field method is one of the most pop-
ular techniques for robot motion planning [2]. The fact is
remarkable that this method can generate a smooth trajectory
and be easy to analyze mathematically. Additionally, precise
model of an environment is not necessarily needed. Although
artificial potential field method has these accessible proper-
ties, there is local minimum problem of potential functions.
A number of researches have been done to tackle with this
problem, for recent example, [7] [9].

Let q ∈ Rn be ann-dimensional state of robot andUa :
Rn → R+ andUr : Rn → R+ be attractive and repulsive
potential function respectively. Then the motion of robot is
planned by following equation.

q̇ = −∇Ua(q)−∇Ur(q) (1)

If we choose attractive potential function as Lyapunov func-
tion candidate, its time derivative is

d

dt
Ua(q) = −∥∇Ua∥2 −∇UT

a ∇Ur (2)

Thus (2) shows local equilibria can exists at such pointsqle ∈
Rn that satisfies−∥∇Ua(qle)∥2 = ∇Ua(qle)

T∇Ur(qle). So
local equilibria are always contained in the subspace ofRn,
Ω = {q : ∇UT

a ∇Ur ≤ 0}, because−∥∇Ua∥2 is always
less or equal 0. Therefore two strategies can be effective to
prevent trapping in local minima. One is evasion of approach



to the terrainΩ and the other is erasing local stable region
like downward convex region.

B. Particle Swarm Optimization

Particle Swarm Optimization (PSO) [1] is one of a meta-
heuristic optimization methods actively utilized for robot mo-
tion planning in recent years [3] [5] [6]. PSO is inspired by
simplified social model of bird flocking and fish schooling.
A set of randomly generated search points called particles
construct swarm and it propagates through the space. Each
particle adjusts its motion in accordance with the action
history and information of search space shared across the
particles. Although PSO is mathematically simple algorithm
and does not need information regarding gradient of objective
function, it can solve nonlinear optimization problem fast.

In this paper it is worthy of remark that the basic prin-
ciple of original PSO is the hypothesis, “information is
shared across the swarm”. Each particles utilize information
acquired not only by itself, but also other particles’ to
determine the search action. As a member of aggregation,
it is reasonable to integrate the action pattern lead by
own experience and the common sense for the purpose of
adaptation to the environment.

III. ARTIFICIAL POTENTIAL FIELD METHOD
UTILIZING PARTICLE SWARM

The robot is required to reach the goal state while avoid-
ing collision with obstacles by real-time computation in a
not fully-known environment. Particularly a local reactive
method, artificial potential field method has suitable char-
acteristics for this objective, but there is a local minimum
problem. Two strategies to prevent the trapped situation in
local stable region would be possible as described in Section
II-A. In this section, proposed method is presented along the
above strategies.

A. Artificial Potentilal Field Method with Contour Feedback

Here, we discuss the evasion of terrain that possibly
incorporates the local stable equilibria. In artificial potential
field, local minimum could exist in subspaceΩ = {q :
∇UT

a ∇Ur ≤ 0}. ∇UT
a ∇Ur ≤ 0 means the gradient of

attractive potential function and the gradient of summation
of repulsive potential functions derived from each obsta-
cle make an angle more thanπ. So roughly speaking, if
∇UT

a ∇Ur ≤ 0 is satisfied, obstacles are frequently found
in the interspace between the robot and its destination. If
rectilinear path is blocked by the obstacles, the robot must
generate circumvent motion in accordance with negative
gradient ofUr. The success and failure of circumvent mo-
tion depends on the existence of local minimum equilibria.
Therefore it is desirable for the robot to set up not only
repulsive operator but also a explicit module to circumvent
the obstacles that operates regardless of existence of local
minimum equilibria.

Whereat we introduce a feedback oriented to the contour
of repulsive potential function. LetJ ∈ Rn×n be a skew-

symmetric matrix, then the feedbacku is represented as

u = κ

(
1− ∇UT

a ∇Ur

∥∇Ua∥∥∇Ur∥

)
J∇Ur (3)

κ ∈ R is a parameter determines magnitude and direction
of the circumvent motion. From (3),u could be regarded
as nonlinear damper and it takes zero if∇Ua and∇Ur take
same direction. Henceu can generate motions that evade the
terrainΩ. Besides, it makes no effect for the risk of collision,
because it takes direction along the contour of repulsive
potential fucntion. With the feedback, whole dynamics of
planner is modified tȯq = −∇Ua −∇Ur+u. Again, time
derivative ofUa is

d

dt
Ua(q) = −∥∇Ua∥2 −∇UT

a ∇Ur

+κ

(
1− ∇UT

a ∇Ur

∥∇Ua∥∥∇Ur∥

)
∇UT

a J∇Ur

(4)

κ∇UT
a J∇Ur can be positive if direction of circumvent

motion generated byu does not point a direction of the
destination. However, (4) shows it must be required to recede
from destination in some trapped situations to move to
global stable terrain. In the result it turns out sometimes the
robot should tolerate detriment in short time interval for the
accession to the global minimum.

Introduced feedback works along the contour ofUr(q).
It could be interpreted as a circumvent motion or search
motion to discover terrainΩc = {q : ∇UT

a ∇Ur > 0}. In
Fig. 1(a), example of trajectory generated by the method
is shown. Square is a robot, cross is obstacle, five-pointed
star is destination and contour ofUa + Ur is also depicted.
The robot go straight and encounter obstacles, then it starts
circumventing to search other candidate of global stable
terrain. Finally the robot succeeded to reach the destination.
Fig. 1(b) shows the robot could be trapped by local minimum
in enclosed situation by the obstacles. This is reasonable
function because the robot should not muscle in to weave
its way through obstacles in such situations, especially when
obstacle represents human.

B. Particle Swarm as Virtual Agents

The robot sometimes generates an inefficient motion in
above method. As is shown in Fig. 1(a), if a wall stands
between the robot and the destination, the robot would hustle
against the repulsive potential field derived from the wall and
finally start to circumvent it. Obviously the derived path is
not the shortest one. This kind of problem is intrinsic for
local reactive methods, because it makes decision without
calculating the entire optimality. However, as mentioned in
Section I, global computation is not realistic in terms of
calculation cost. Therefore a method enables the robot to
obtain helpful local information efficiently is needed.

Information of the past best postion in the swarm is shared
across the particles in PSO. At the same time, the particles
just conform simple dyanamics but does not compute global
optimality. Nevertheless PSO can be a powerful solver for
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Fig. 1. Artificial potential field method with contour feedback

an optimization problem. By metaphorical thinking of PSO,
if the particles have dynamics as a virtual robot agent, it
would be able to get information concerning the terrain that
has the possibility to put the robot in undesirable situations.
And if the particles can transmit the information of potential
risk to the real robot in an appropriate way, the robot can
utilize spatial information to decide its motion without global
computation. PSO has its basis on best action search like
foraging of living objects. In contrast, our idea has a basis
on worst action search like crisis prevention.

Let the dynamics of particles be determined by usual
attractive and repulsive potential function as (1). Then the
particles would move toward the local or global minimum
in accordance with their initial states. Therefore usage of just
attractive and repulsive potential function provides spatially
lopsided information regarding equilibria in stable terrain.
To utilize spacious and various information, we introduce
repulsive potential functionU j

p : Rn × Rn → R+. j is an
index of m-tuple particles andqj

p ∈ Rn is a state ofjth
particle. ThenU j

p (q
i
p, q

j
p) is a repulsive potential function

assigned tojth particle and acts onith particle (whenq is
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Fig. 2. Contour of potential function compensated by three particles

chosen,U j
p (q, q

j
p) acts on the robot). A whole dynamics of

ith particle is represented as

q̇i
p = −∇Ua(q

i
p)−∇Ur(q

i
p)−

m∑
j ̸=i

∇U j
p (q

i
p, q

j
p) (5)

So each particle is attracted by global minimum and repelled
by obstacles and other particles. Thus information of the
search space could be collected in reasonable manner, be-
cause the particle moves as simplified real robot and repell
each other to extend the search space. Another merit to use
particles is that we have no need to consider the risk of
collision, because they don’t have any physical body. So the
particles can search the space in a way real robot can not
do.

Next we design the propagation of information regarding
local stable region to the real robot. This could be done by
the every assigned particles’ repulsive potential function that
works on the robot. Particles search the space in accordance
with the dynamics (5) and might be trapped in local stable
region. This means unreasonable paths in terms of ordinal
artificial potential field method exist in neighborhood of
the particle. So the particle should offer the information to
the robot and other particles. That is, the particle generates
potential field that repells robot and other particles so as not
to approach the terrain. Fig. 2 depicts particles, represented
by upward-pointing triangles, move to the local stable region
and compensate it by assigned repulsive potential function.

With the effect of particles’ repulsive potential function,
dynamics of robot is modified as below

q̇ = −∇Ua(q)−∇Ur(q)−
m∑
j

∇U j
p (q, qj) + ū(q) (6)

ū = κ

(
1− ∇UT

a ∇Ur

∥∇Ua∥∥∇Ur∥

)
J(∇Ur +

m∑
j

∇U j
p ) (7)

Hereat,u is replaced byū ∈ Rn represented as (7) that
also circumvent repulsive potential functions assigned to



the particles. The reason of modification is thatU j
p can

erase local minimum derived fromUr, but they also could
make new local stable regions usually smaller ones than the
originally existed. Note that the robot is not assigned any
repulsive potential function act on the particles.

C. Internal Parameters and Proposed Method

Framework of proposed method has been constructed at
this point, but there could be some improvement from an-
other point of view. As mentioned in Section III-B, proposed
method has its basis on starategy of evading from worst
situation. Hence it might be possible to consider generated
motion reflects events that operate the “emotions” of the
robot and particles, so as to disincline the situation within
a context of analogy with living objects. Here we label the
internal state as stress and discuss constructive utilization
of such function to make our method more adaptive to the
stressful situations.

Firstly, we focus on dynamics of internal mechanism
inside the particles. The task assigned to the particles is
to inform the robot and other particles a prospect about
local stable region. The information is transmitted by the
repulsive potential functionU i

p centered on the position of
ith particle. Whereat, width ofU i

p should be conditioned by
how undesirable the situationith particle is in. If there are
no obstacles around the particle, thenU i

p should have narrow
skirts so as not to block a path of robot and other particles.
That is, ith particle does not feel risk or stress and there
are no information to share across the swarm. In contrast,
if there are obstacles that block the path ofith particle, it
would be stressed by the obstacles. So the information of
stressful terrain should be informed across the swarm by
wide skirted repulsive potential function. Here we setbip ∈ R
as a parameter of width of theU i

p. bip is adjusted by following
equation.

bip = βi
p tanh

(∫ t

t−Tp

exp(−λi
p∥q̇i

p∥)dt

)
(8)

βi
p ∈ R andλi

p ∈ R+ are paremeters represent the maximum
value of bip and speeds of stress accumulation.Tp ∈ R+ is
a time interval stress is holded. So the stress accumulated
beforet − Tp is got lost in oblivion. (8) meansith particle
broaden assigned repulsive potential function with it takes
small velocity. In local stable region a particle takes small
velocity and takes zero at equilibrium, so the formulation
is constructed asU i

p covers local stable region. Of course,
U i
p should not be expanded in neighborhood of global stable

equilibrium and it is treated special case. Actually, in Fig.
2, stress parameters have been already intorduced and the
transition ofbip is depicted in Fig. 3.

Secondly, we discuss the design of internal mechanism
for real robot. Although the particles try to search the space
and clarify risks of local stable region to the robot, there
may be situations in that the robot is trapped by local mini-
mum of compensated potential functionUa +Ur +

∑m
j U j

p .
Alternatively, the robot might take cycled path and could
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Fig. 3. Internal parameters of particles

not approach the destination. Both of the cases degenerates
performance of the system, but they could occur in unpre-
dictable environment. To overcome such stalled situations,
the robot should be capable of interpreting the situations and
breaking out from the terrains. And so we implement a stress
parameters ∈ R+ and function to produce new particles to
vary the neighborhood environment of the robot.

s =

∫ t

t−T

exp(λq̇T ∇Ua

∥∇Ua∥
)dt (9)

λ ∈ R+ is a parameter regarding accumulation of stress and
T ∈ R+ is time interval during that the past stress is holded.
If the robot could not course steepest decendent direction
of Ua during time intervalT and s exceeds the threshold
sth ∈ R+, then the robot lets out new particle, so the number
of particles is updated tom+1. The value ofs is initialized
at the same time as new particle is produced. The sequence
is repeated until the particles release the robot from stressful
terrain.

Now then proposed method can be taken together by the
equations (5), (6), (7), (8), (9). First of all, the robot place
some particles in the space and they move toward the des-
tination along an attractive potential function. The particles
expand skirts of assigned repulsive potential function if they
are blocked or stressed by the obstacles. The robot would
produce new particle if it could not proceed to the destination
continuously. In so doing, the motion of robot is generated
by the balance of attractive and repulsive and circumventing
components.

Note that there could be various design of stress functions
for the robot and particles depending on the purpose of
recusal. So (8) and (9) are only instances to exemplify the
effectiveness of proposed method.

IV. SIMULATION RESULTS

In this section, results of two computational experiments
are shown. One is an environment in that U-shaped obstacle
is set. And the other is an environment in that multiple
obstacles are set at random positions. Here, we utilize a



following potential function. The destination is set at origin.

Uk(q) = akq
Tq exp

(
− (q − qk)

T (q − qk)

b2k

)
(10)

ak ∈ R+ andbk ∈ R are parameters. When we takeq0 = 0
and takeb0 large enough,U0 is treated asUa := U0. And
(10) can be repulsive potential function if we takeqk as

qk =
∥qi

o∥2 − b2i
∥qi

o∥2
qi
o

qi
o ∈ Rn is position ofith obstacle and thenUk has its local

maximum atqi
o. U j

p is represented in the same way forqj
p.

Initial position of placed particle is determined as described
below.

q + rd
qd − q

∥qd − q∥
+ rufu

qd ∈ Rn is destination andfu ∈ Rn is a function outputs
vector that has uniformly distributed elements in the interval
(−1, 1). rd ∈ R+ and ru ∈ R+ are positive parameters.
Particles basically precede the robot, because they should
not affect the robot motion immoderately and their function
is searching of potential field. In parallel, particles need to
help the robot when it gets stuck in local stable region, so it
would be desirable to set the initial position of particle, or
rd andru, at front of robot, not so far position.

A. U-shaped obstacles

To show the characteristic features of proposed method, an
environment set U-shaped obstacle is simulated. Following
set of initial parameters are chosen.a0 = 0.5, b0 = 400,
initial state of robotq0 = (0, 0), ajp = 0.5, bjp = 0.001,
rd = 3, ru = 1.5, m = 4. Positions of obstacles are
(6, 6), (5, 7), (7, 5), (4, 8), (8, 4), (3, 7), (7, 3), (2, 6), (6, 2),
(1, 5), (5, 1), and corresponding(aio, b

i
o) are(1.5, 1), (1.4, 1),

(1.4, 1), (1.2, 1), (1.2, 1), (0.9, 1), (0.9, 1), (0.8, 1), (0.8, 1),
(0.4, 1), (0.4, 1). T = 2, Tp = 2, J = [0 1;−1 0], sth = 1.8,
λ = 1, βi

p = 1, λi
p = 0.1, κ = 0.5. Additional particles are

set byrd = 2, ru = 1. And the velocity of robot and particles
have their maximum at1 and2 respectively. Sampling rate
is 100[ms] and whole simulation time is27[s].

Resulted trajectories of robot and particles are depicted
in Fig. 4. Square represents robot, five-pointed star does the
destination, crosses do obstacles, upward-pointing triangles
do initial particles, and downward-pointing triangles do
added particles respectively. Contour ofUa+Ur+

∑m
j U j

p is
also depicted. In Fig. 4(a), robot and initial particles started
approaching to the destination and go into interior of U-
shaped obstacle. Obviously there exists local stable region,
so bip ands increase gradually. Then the preceding particles
compensate the local stable region by increase ofbip, and
the robot starts circumvent motion without searching back
of it. However, In Fig. 4(b), the robot moved few distances,
because the local stable region could not be fully compen-
sated just by the initial particles. So the robot is stressed
and produce new particles in front at short time intervals.
Finally in Fig. 4(c) the robot succeeded to circumvent U-
shaped obstacle and arrived global stable terrain.

TABLE I

NUMBER OF SUCCEEDED TRIAL AND SUCCESS RATE

Original Contour Proposed
Case 1 210 (70.0%) 267 (89.0%) 275 (91.7%)
Case 2 67 (22.3%) 251 (83.7%) 279 (93.0%)

If we set more particles initially, generated path would be
pre-circumvent motion and the performance should improve.
Thus we can generate efficient motion of robot using appro-
priate setting of particles. And even if improper settings is
done, the robot would produce particles in accordance with
its stress parameter. This can be seen in Fig. 5 that depicts
the transition of internal parameters through the experiment.
From the top of the figure,s and bip of two initial particles
andbip of three added particles are shown.

B. Randomly positioned obstacles

Obstacles are located in randomly determined positions
in following experiments. In particular, the initial robot
position and the destination are fixied at(0, 0) and (10, 10)
respectively, and obstacles are uniformly distributed in an
open interval(1, 9) with respect to each axis. Number of
obstacle is also chosen as uniform random numbers from 1
to 10 in Case 1 and 11 to 20 in Case 2. Number of trial is
300 and each trial is executed at a time interval[0, 30]. Other
parameters are the same as the experiment of Section IV-A.
If ∥qd − q∥ ≤ 1 is satisfied att = 30, the trial is judged
as success. Proposed method and original artificial potential
field method and original method with contour feedback are
tested. The number of succeeded trials and success rates are
tabulated in Table I. It is remarkable proposed method have
kept high success rate even though the complexity of the
environment increased.

V. CONCLUSION

In this paper, artificial potential field method utilizing
particle swarm and its internal parameter has been presented.
Particles embedded dynamics of ordinal artificial potential
field method search local stable region. Each particle ac-
cumulates stress as an internal parameter in local stable
region and it broaden assigned repulsive potential function
along with increase of the internal parameter. Additionally,
particles are added in accordance with the internal parameter
of the robot to vary the stressful environment. The robot plan
its motion with the compensated artificial potential function
and a feedback oriented to contour of sum of obstacles’
and particles’ repulsive potential functions. Computational
experiments showed the effectiveness of proposed method
especially in complex environment.

Narrow skirted and plentiful particles would generate pre-
cise motion, but there is a trade-off between computational
cost and performance, so the evaluation of this term is future
work. And parameter of contour feedbackκ is fixed in this
paper.κ controls the direction and weight of circumvent
motion. Obvioulsy performance of system could improve
if it is selected appropriately. As a expanded virtual robot
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Fig. 4. Generated motion for U-shaped obstacle

body, or a kind of inverse model, another type of particle
would be available to determineκ. Finally, this method is
originally invented as reference input for control system
of mobile robot. We are going to construct comprehensive
system supposed for dynamic environment in the future.
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