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Abstract— In this paper, we propose a method to classify
glass and non-glass objects and build glass confidence maps
for indoor mobile robots using laser range-finders (LRFs). The
glass confidence map is aimed to improve robot localization
systems’ robustness and accuracy in glass environments. For
most LRF-based localization systems, objects are assumed to
be detectable from all incident angles,which is true for non-
reflective and non-transparent objects, like walls. However, glass
can only be detected by LRFs in certain incident angles. This
glass detection failure decreases robots’ localization accuracy.
Exhibiting glass’ position in the map and taking its detection
failure into consideration can increase the localization accuracy.
We propose the usage of a neural network to classify glass and
non-glass objects, with LRF’s measured intensity, distance and
incident angles as inputs. We verified our method experimen-
tally, and experimental results show that our method can suc-
cessfully distinguish glass from non-glass objects and accurately
construct a glass confidence map with high confidence.

I. INTRODUCTION

There is high potential for the usage of mobile robots in
human environments like homes, shopping malls and offices.
For these robots, localization is an essential task, and because
glass is very common in the above-mentioned environments,
as shown in Fig. 1, being able to localize robustly in glass
environments is important. In this paper, we propose a
method aiming to improve the robustness of mobile robots’
localization systems in indoor human environments.

A lot of current popular localization systems for mobile
robots are based on Laser Range-finders (LRFs), because
of their high accuracy measuring distance. However, LRF-
based localization systems perform unsatisfyingly in glass
environments [1]. By default, objects are assumed to be
detectable in all incident angles, but glass is only detectable
to LRFs for small incident angles. This glass detection
failure disturbs the existing scan matching schemes [2], and
consequently negatively influences localization accuracy. A
possible solution to this problem is to provide to the robot
a ‘glass map’ of the environment, which shows if objects
are glass or non-glass. Then the robot can take the LRFs’
glass detection failure into consideration when scanning
glass objects. However, glass maps are rarely available, and
manually making glass maps is not trivial. In oder to solve
this problem, in this paper we propose a method to classify
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Fig. 1. Example of an indoor environment. Typically, glass are present in
the surroundings.

glass and non-glass objects using laser range-finders (LRFs)
and build glass confidence maps.

In order to build a glass map, the challenging point is
to classify glass and non-glass objects, which has been
previously explored by the robotics community. Lei et al.
[3] proposed a method to detect transparent objects based
on color images and LRF scan data. Lysenkov et al. [4]
presented an approach to recognize transparent objects with
a Kinect sensor. However, using multiple sensors may lead to
calibration problems. Contrary to these approach, ours uses a
LRF, considering LRFs are the most widely used sensors in
robot localization and mapping. Recent work brought some
progress to classifying glass and non-glass objects only using
a LRF. Koch et al. [5] detected glass and classified glass and
non-glass objects using a multi-echo LRF. However, their
method requires using this special type of LRFs and cannot
be applied to the more widely used single-echo LRFs. Our
method does not have this restriction and can work on single-
echo LRFs. Wang et al. [6] detected glass using the intensity
change of specular reflection of the glass surface, which
can also be used to classify glass and non-glass objects,
although classification was not their focus. However, in order
to receive the specularly reflected light, their method requires
the robot to move in paths that enable it to scan objects
from close to 0 deg of incident angle. Our method does not
have this restriction and can detect glass in a larger range of
incident angles.

In this paper, we propose a novel method to classify glass
and non-glass objects using only a single LRF, and to build
a glass confidence map. The proposed classifier is based on
a 4-layer neural network and employs (i) LRF measured



Fig. 2. Physical phenomena during the LRF scanning process.

distance, (ii) intensity and (iii) corresponding incident angle
as inputs. It can work on common LRFs, and do not have
strict restrictions on the scanning incident angle. In addition,
the proposed glass confidence map is a grid map exhibiting
both objects’ positions and their probabilities of being glass.
Grid map representation and a probabilistic approach are
chosen to build the glass map, because they are widely used
in robot localization, and can thus be helpful for ease of
integrating our method with common localization algorithms.

The rest of this paper is organized as follows: Section II
provides related physical theories, and Section III includes
an overview of our proposed method, and primary exper-
imental verification results. Section IV presents the details
of our proposed neural network based classifier. Section
V includes system structure and algorithm of using our
proposed method to build a glass confidence map. Section
VI shows experimental results of glass map building in an
indoor environment. Finally, conclusions and future works
are drawn in Section VII.

II. LRF PRINCIPLES AND RELATED PHYSICS

A LRF scans an environment by sending out multiple
beams of laser light sequentially in a fan shape, and then
waiting for the light being reflected back to it by objects. By
measuring the time of flight of the laser beams, the LRF can
calculate the distance to the objects in the environment.

As shown in Fig. 2, when propagating through space,
LRF’s emitted laser loses part of its energy. The ratio of lost
energy in its path is determined by the distance and medium.
When it hits an object, the laser goes through three main
physical phenomena: (i) penetration (mainly determined by
object’s transparency); (ii) reflection (determined by the
object’s reflective index, incident angle, as well as incident
light wavelength and polarization); and (iii) absorption of the
remaining light. Among these three parts, only the reflected
part might be received by the LRF. Moreover, light can
be reflected in two ways, diffusely reflected and specularly
reflected, determined mainly by the surface’s roughness and
micro-structure. If the LRF scans at 0 deg of incident angle,
both types of reflected light may return to the LRF, if else,
only part of the diffuse reflection can return to the LRF.
Because the diffuse reflection intensity is not even in each

direction, incident angle also makes a big difference. Finally,
after going through another path loss, the reflected laser goes
back to the LRF. However, the intensity value we get from
the LRF is not the true intensity of the returned laser. The
effect of LRF signal processing mechanism, which differs
for different models, has also to be taken into consideration.

Although there are many influencing factors in the LRF
scanning process, in the case of mobile robots, factors related
to LRF model and medium can be considered fixed, and
the rest can be simplified into three main factors, material
m, distance d and incident angle θ . Glass and non-glass
objects have obviously different material features, such as
transparency, roughness, and reflective index, thus their LRF
received intensities should be different when other factors
are the same. Therefore, theoretically, glass and non-glass
objects can be classified based on their LRF intensities,
considering the influence of distance and incident angle.

III. CLASSIFICATION METHODOLOGY

In this section, firstly, an overview of our proposed clas-
sification method is given based on the analyses in the last
section. Then the feasibility of this method is primarily ex-
amined through experiments. At the end, about how to build
the proposed classifier is discussed based on the experiment
results.

A. Classifier Overview

Based on the physical analyses in the last section, an
object’s LRF intensities is mainly determined by its material
type, distance and incident angle, hence its material type
can by reflected by these three factors. In fact, Kirchner
et al. [7] used a simpler but similar method to classify
common opaque materials, such as wood and cloth. In their
research, distance is assumed to be fixed and materials are
classified based on the relationship of intensity and incident
angle. In other words, they built the following mapping
function, where m means material type, under the condition
that distance d is a constant value:

f (I,θ)→ m. (1)

However, their method is insufficient to solve the classifi-
cation problem mentioned in this paper. Because, first, their
method is only verified on opaque materials, not covering any
transparent object like glass; and second, distance changes
significantly in the case of mobile robots, and thus cannot
be assumed to be fixed.

In order to build a more suitable mapping function to
classify glass and non-glass for mobile robots, in this paper,
we take distance’s influence into consideration and propose
to build the following extended mapping function from
LRF measured intensity I, LRF measured distance d, and
corresponding incident angle θ to material type m (glass or
non-glass):

f (I,d,θ)→ m. (2)



Fig. 3. Comparison of the relationship of intensity and incident angle
between white walls and glass.

B. Primary Experimental Verification

In order to verify that glass and non-glass object can be
classified based on intensity, distance and incident angle,
we performed two simple experiments. In order to decrease
complexity as well as investigate the influence of each factor,
in each experiment we measured intensities fixing either
distance or incident angle, while varying the other one, for
both glass and non-glass samples. For both experiments, we
used a Hokuyo UTM 30LX-EW LRF. It has to be noted
that although the LRF we used is a multi-echo LRF, our
method does not need its multi-echo function and can work
on common LRFs. In the experiments we only use the first
echo.

In the first experiment, we scanned a glass and a white
wall from different angles, with distance fixed at 1 m.
According to the results shown in Fig. 3, glass and wall have
totally different curve shapes and can be easily distinguished.
Glass has lower intensities or even becomes undetectable
at large incident angles, which matches theories because its
transparency is so high that most of light penetrates. Besides,
its roughness is relatively low, and thus the reflection is
mainly specular, which leads to that the intensity near 0 deg
is extremely high. The wall tested in our experiment shows
nearly uniform intensities at any incident angle, which might
be because it is a nearly ideal matte surface.

In the second experiment, we scanned the same samples
at different distances, with incident angle fixed at near 0 deg.
The results are shown in Fig. 4. Results show that glass and
wall can be easily distinguished based on their intensities
in near distances. While as distance increases, glass data
becomes highly noisy and sparse, increasing the difficulties
of classification. It is worth to note that according to inverse-
square law [8], intensity should decrease monotonously
as distance increases. However, experimental results show
intensity peaks at near 1 m for all materials. We consider that
this discrepancy between theory and practice results from the
LRF’s signal processing mechanism, which means that using
LRF intensity to classify has limitation related to used LRF
models.

Fig. 4. Comparison of the relationship of intensity and distance between
white walls and glass at 0 deg of incident angle.

C. Classifier Building Methods

In the primary validation experiments mentioned before,
we had one factor fixed at each time. However, in practice,
both distance and incident angle change at the same time as
the robot moves. Therefore, it is necessary to consider all
changing factors jointly.

Kirchner et al. [7] proposed a classification method based
on fitting intensity to a second degree polynomial function
of incident angle. If we want to use a similar approach, given
our assumption, we would have to find a mapping function
that also consider distance. However, when considering the
change of incident angle and distance jointly, finding an
explicit mapping function turns out to be impractical because
of the following reasons:

• The distance-intensity relationship is non-linear and
varies for different materials.

• Theory does not match practice because of LRFs’ signal
processing mechanism, which are unclear and different
for different models.

• Glass intensity data is noisy, increasing the difficulty
of accurately building a function based on experiment
data.

As results, to build the classifier, we choose to learn directly
from data without an explicit model using machine learning
methods.

IV. CLASSIFIER BASED ON NEURAL NETWORKS

We choose to use a neural network to classify glass
and non-glass objects after trying several types of common
machine learning methods. Details of our proposed neural
network are presented in the next sub-sections.

A. Structure

We build a 4-layer neural network, including 1 input layer,
2 hidden layers and 1 output layer, as shown in Fig. 5. The
input layer has 3 input nodes, which take a scalar value
of intensity, incident angle and distance respectively. The
2 hidden layers both have 100 hidden nodes. The neural
network with these certain numbers of hidden layers and
hidden nodes performed best among various other structures



Fig. 5. Structure of the neural network. Hidden layers are in the red dash
line box

we tried. Finally, the output layer includes 2 nodes, giving
the probability of being glass and non-glass respectively. We
used the Softmax function to normalize the probability to
sum to 1.

B. Training and Testing

We collected and labeled training data manually in the
corridor shown in Fig. 1. Each training sample included a
intensity and a distance value output by the LRF, as well
as the corresponding incident angle of the scan, as shown
in Fig. 6 (a). If the sample is glass, the probability of non-
glass and glass are set to 0 and 1 respectively, if not, to 1
and 0. Our dataset included about 13,000 non-glass samples
and 5700 glass samples. We used 80% of it for training,
and 20% for testing. In testing, if the output probability of
being glass was higher than 0.5, the sample was labeled as
glass, and if not, as non-glass. Testing results showed that
the trained neural network could reach a correct predicting
rate of 97.3%.

C. Prediction

A LRF scans in a fan shape and emits multiple beams
in various directions. As a robot moves, a single point on a
object surface (or a grid in the map) is usually scanned for
multiple times (Fig. 6 (b)), generating multiple input sam-
ples. We input the samples into the trained neural network
separately and get multiple probabilities for the same point.
We calculated the final probability for this point by averaging
all the output probabilities.

V. GLASS CONFIDENCE MAP BUILDING

In previous sections, the details of our proposed classifica-
tion method is presented. In this section, the system structure
and algorithm of using our method to build a glass confidence
map are described.

A. System Structure

Our proposed classifier needs the (i) intensity I, (ii)
distance d and (iii) incident angle θ as inputs. Consequently,
our proposed method needs to be input, first, LRF scan data,
which provides I and d; and second, the occupancy grid map
of the environment and the robot position, from which θ can
be calculated. Our aim is to build a glass grid map showing

(a) (b)

Fig. 6. (a) One sample includes a intensity I, a distance d, and the
corresponding incident angle θ . (b) A single point on a object surface (or a
grid in a map) will be scanned for multiple times, generating multiple input
samples.

each grid is glass or non-glass and add this information to
the occupancy map.

In detail, the data processing flow chart of our system is
shown in Fig. 7. Input data, which is shown in blue color,
including robot odometry, LRF data and a normal occupancy
grid map without object type information are input into
both a localization algorithm and our proposed algorithm.
The localization algorithm calculates the robot position in
the occupancy map, which is also input into our proposed
algorithm. Incident angles of each scan are calculated based
on the robot pose and the occupancy grid map. Finally,
a glass grid map of the environment is generated by our
algorithm.

Fig. 7. Data processing flow chart of our implementation. Input data are
shown in blue color. Blocks without background color are data, and blocks
with background color are algorithms.



Fig. 8. A Pioneer 3-DX equipped with a Hokuyo UTM 30LX-EW LRF
is used in the experiment

B. Algorithm

Our proposed method builds the map using the procedure
as follows:

• For each robot pose, find the chronologically nearest
LRF scan, and perform the following steps.

• For each occupied grid in the map, find its surface
normal, and then calculate the incident angle θ based
on the robot position and grid position.

• Locate beams in the direction of the target grid based
on the robot pose and the grid position. Remove noise
of the located beams by comparing the their measured
distances and the calculated distances in the map. Cal-
culate the mean intensity I and distance d of the filtered
beams.

• Input θ , I, d into the neural network and get the glass
probability for the corresponding grid.

• Average all probabilities for the same grid generated at
different robot pose, and then show the value in colors
at corresponding positions in the glass confidence map.

VI. EXPERIMENT

We performed an experiment to demonstrate the feasibility
of our proposed method. As shown in Fig. 8, we fixed
a Hokuyo UTM 30LX-EW LRF on a mobile robot, the
Pioneer 3-DX, and tele-operated the robot along a corridor. In
the corridor a large area of glass exits, as shown in Fig. 1. We
recorded the robot’s odometry data and LRF scan data and
obtained a normal occupancy grid map with glass marked
as occupied grids using method proposed in [9]. Finally, we
built a glass grid map with glass/non-glass information of
each grid through the processing process shown in Fig. 7.

Figure 9 shows the normal occupancy grid map, where
glass is marked manually, and the robot path and start
position are shown in blue line and red dot respectively in
the map. Figure 10 is the glass confidence map generated
by our proposed method, which shows that our methods can
classify glass and non-glass objects successfully. Not only
wall, but also plastic trash bins and painted doors are all
correctly classified as non-glass objects. Additionally, it has
to be noted that part of the glass behind several trash bins is

Fig. 9. Grid map of the experiment environment. The robot’s moving trace
is marked in blue line, and the red dot is start position.

TABLE I
CLASSIFICATION RESULTS

Material type Glass Non-glass

Total grid number 496 3854
Correct number 412 3783
Incorrect number 84 71

Correct rate 83 % 98 %

also correctly classified, as shown in Fig. 10 (e). This proves
that our method does not require the object being scanned
at the surface normal, showing advantage over the method
proposed in [6].

Table I is classification results, according to which, 98%
of non-glass grids and 83% of glass grids are correctly
classified. Mis-classifications are mainly near to thin metallic
pillars shown in Fig. 10 (c). Possible reasons for these mis-
classifications include: first, the unpainted metallic pillars are
shinny and reflective, and thus have similar reflective features
as glass; second, robot localization errors affect strongly
when encountering small-size objects, like the metallic pillars
in our experiment; and third, glass near to the metallic pillars
are more likely to be scanned with opaque objects right be-
hind it, causing the intensity measured by the LRF are mainly
from the opaque objects. Besides the mid-classifications near
to the metallic pillars, another obvious failure is a glass door
at the end of a long and narrow passage, shown in Fig. 10 (b),
which is completely classified as non-glass objects. Possible
reason for this failure is that the robot could not get enough
scan samples because of its location.

Figure 11 is the probability histogram of the grids clas-
sified as glass. 62% of the glass grids have probabilities
higher than 0.9, and 80% higher than 0.8. This result
shows that most of the glass grids are classified with high
confidence. It is worth to mention that because the training
set was collected at a similar corridor with the experiment
environment, potential over-fitting problems exist. However,
we leave increasing the algorithm’s robustness for future
work.



Fig. 10. The glass confidence map of the corridor built by our proposed method. Thin metallic pillar in (c) is correctly detected. Also, glass behind the
trash bins in (e) is also detected.

Fig. 11. Probability histogram of the grids classified as glass

VII. CONCLUSIONS AND FUTURE WORK

In this paper, aiming to improve LRF-based robot local-
ization systems’ robustness, we proposed a novel approach
to classify glass and non-glass objects and to build a glass
confidence map, which can be used to solve the inaccurate
localization problem caused by LRF glass detection failure.
In order to minimum the limitations on used sensors, our
method makes full use of the information, both distance and
intensity, gathered by a single normal LRF. Also, our method
adopts to use a neural network which serves to relaxing the
requirements on scanning incident angle, allowing the robot’s
moving path to be freer.

To verify the feasibility of proposed solution, we per-
formed an experiment to build a glass confidence map in
a indoor environment. Experiment results show that the
proposed method can successfully distinguish various kinds
of non-glass objects from glass and build a glass confidence
map with high confidence.

As future works, we wish to extend our method to manage

the possible causes of classification failures mentioned in the
previous sections, and further test our method in various glass
environments. Also, we’d like to enable our implementation
to run online. Although our implementation runs off-line
currently, it is possible to transfer our method into running
online, as the information needed, including (i) LRF scan
data, (ii) occupancy grid map and (iii) robot position in the
map, can all be provided by a online glass-detectable SLAM
algorithm. We also interested in integrating our method with
a localization algorithm and then evaluating the localization
accuracy improvement using our method.

REFERENCES

[1] J. Kim and W. Chung, “Localization of a mobile robot using a laser
range finder in a glass-walled environment”, IEEE Transactions on
Industrial Electronics, vol. 63, no. 6, pp. 3616–3627, 2016.

[2] C. Moon, W. Chung, and N. L. Doh, “Observation likelihood model
design and failure recovery scheme toward reliable localization of
mobile robots”, International Journal of Advanced Robotic Systems,
vol. 7, no. 4, pp. 113–122, 2010.

[3] Z. Lei, K. Ohno, M. Tsubota, E. Takeuchi, and S. Tadokoro,
“Transparent object detection using color image and laser reflectance
image for mobile manipulator”, in Proceedings of the 2011 IEEE
International Conference on Robotics and Biomimetics (ROBIO 2011),
pp. 1–7, 2011.

[4] I. Lysenkov, V. Eruhimov, and G. Bradski, “Recognition and pose
estimation of rigid transparent objects with a kinect sensor”, in
Proceedings of Robotics: Science and Systems, pp. 1–8, 2012.

[5] R. Koch, S. May, P. Murmann, and A. Nüchter, “Identification of
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