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Abstract— Hammering test is a popular non-destructive
testing method which automation is highly demanded for
efficient diagnosis of concrete structures. The objective is to
correctly determine if a hammering sound originated from a
defect in the structure or not. In this paper, we present an
unsupervised learning approach to automation of hammering
test for diagnosis of concrete structures among others. Sound
samples are clustered using fuzzy clustering while incorporating
physical spatial information and Mel-Frequency Cepstrum is
used in order to reproduce human hearing when conducting
hammering test. Experiments using concrete test blocks showed
good results, both in single and multiple defects cases.

I. INTRODUCTION

Concrete is extremely common in modern societies, espe-
cially in social infrastructures such as tunnels. In some cases,
ageing and damages may lead them to structural failure [1].
In order to guarantee their safe use, careful maintenance is
needed. Among all the operations taken to maintain these
structures, the diagnosis for defects is critical since it is a
decision-making step.

One popular diagnosis method is hammering: in this
process, an operator hits perpendicularly the surface of the
structure with a hammer and assesses the presence of defects
from the perceived sound, as illustrated in Fig. 1. It is popular
for being non-destructive and also not requiring heavy and/or
precise equipment. However, this method requires a skilled
operator to be able to correctly analyse the sound and given
the huge population of structures in need of examination
currently in service [2], testing them all with this traditional
method reveals to be problematic. Therefore, the automation
of the hammering test is highly demanded.

Several attempts to adapt the hammering test in an auto-
matic form have been made: [3], [4], [5], [6] used super-
vised learning to correctly distinguish defect sounds from
non-defect sounds. These approaches have given promising
results, however their main drawback is the need of training
sets: depending on various factors, concrete can greatly differ
from one structure to another, even if they were made from
the same batch, thus choosing the adequate training set is
difficult.

In our previous method [7], based on clustering algorithm
K-means++, the centroid of the cluster occupying the most
of the tested structure’s surface was used as a model for
the non-defect sample to conduct diagnosis. However, this
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Fig. 1: Hammering test conducted by a professional.

approach required a tedious threshold selection process by
the user, limiting practicability. Our proposed method takes
a new approach to this task, reinforcing clustering quality
using spatial autocorrelation and Mel-Frequency Cepstrum
(MFC), providing a robust and high-performing unsupervised
learning method for discrimination of multiple defects.

II. CONCEPT

When witnessing human operators conducting hammering,
it appeared clear that a hammering sample was not evaluated
alone but relatively to other samples physically located
around it: operators usually strike repeatedly following a
line. This consideration motivated us to include the concept
of spatial autocorrelation in our method, inspired by its
application in computer vision [8]. This idea seems further-
more relevant since defects are localized and compact on a
concrete structure.

Human operators are able to differentiate with relatively
high accuracy defect and non-defect hammering samples.
Understanding the exact physical phenomena that generate
hammering samples would be complex, however the success
of hammering as a testing method should indicate that
the audio features characterizing hammering samples are
within the human ear’s perception range: humans are able
to discriminate defect hammering sounds. MFC is a feature
vector for audio data devised to simulate human hearing,
widely used in speech recognition [9], [10] and gaining
popularity in other related fields such as music information
retrieval [11].

Another assumption is that most of the tested structure
is non-defective. This means that it can be assumed that
most of the hammering samples collected on a structure are
non-defects. The justification for this is that for a heavily



damaged structure, a simple visual inspection is enough
to conduct diagnosis, defects in such high presence would
appear on the surface and be blatant. Thus, this provides us
with a statistical characterization for non-defect hammering
samples.

III. METHOD

A. Feature vector

Considering a dataset D = X1, ...,XN composed of N
hammering samples, a hammering sample Xi = {li,xi} is
defined as follows:

1) Spatial information: A physical location, point of
contact between the hammer head and the structure’s surface,
noted li = (lxi , l

y
i ) (assuming the tested surface is a plane).

The Euclidian distance is used to quantify physical dis-
tance between two hammering samples on the structure’s
surface, noted

∥∥li − lj
∥∥.

2) Audio information using MFC: Mel-Frequency Cep-
stral Coefficients (MFCCs) of the sound resulting from the
impact of the hammer head to the structure’s surface, noted
xi.

A metric based on the sample Pearson correlation coeffi-
cient, as defined in [7], was used to quantify similarity be-
tween MFCCs of two hammering samples. Given the MFCCs
a = (al)[l=1,...,M ] and b = (bl)[l=1,...,M ], the distance
between them d(a,b) is computed as in eq. (1) and eq. (2),
with M being the number of filters used during generation of
MFCCs and a and b being the average coefficient of a and b
respectively. The sample Pearson correlation coefficient has
the advantage of including a zero mean and unit variance,
enabling audio comparison of hammering samples despite
not monitoring the input i.e. the impact force of the hammer
head in our case.

rab =

M∑
l=1

[(al − a)(bl − b)]√
M∑
l=1

(al − a)2
√

M∑
l=1

(bl − b)2
(1)

d(a,b) =
1− rab

2
(2)

B. Fuzzy Clustering with Spatial Autocorrelation and MFC

1) Fuzzy C-Means Clustering (FCM) initialization:
For each sample is defined a set of fuzzy coefficients
(ui1, ..., uiK), randomly initialized at the beginning, with K
the number of clusters. Fuzzy coefficient uij is defined as
quantification of hammering sample Xi belonging to the jth

cluster [8].
2) FCM update in MFC space: At each iteration of FCM,

the fuzzy coefficients are updated following eq. (3), with
c1, ..., cK being the centroids of clusters with number of
clusters K an user input and m a parameter controlling the
fuzziness of the system.

uij =
1∑N

l=1
d(xl,ci)
d(xj ,cj)

2/(m−1) (3)

3) FCM update with Spatial information: The concept
of spatial autocorrelation can be defined as follows: samples
located close to each another are likely to belong to the same
cluster. In our particular case, this concept can be interpreted
simply as: two hammering samples physically close on the
structure’s surface are likely to belong to the same cluster.

For each hammering sample Xi, a neighbourhood NB(Xi)
is defined as samples located in a disc of radius γ centred
on the sample’s physical position li, as in eq. (4). Based
on this neighbourhood, an estimator hij is used to calculate
an average of the fuzzy coefficients in the neighbourhood,
as in eq. (5), with |NB(Xi)| being the cardinality of the
neighbourhood. This can be interpreted as the ”expected”
fuzzy coefficients for sample Xi from other samples that
are physically located near it: the average of (ukj)k∈NB(Xi)

translates the principle of spatial autocorrelation for the jth

cluster.

NB(Xi) = (Xi ∈ D |
∥∥li − lj

∥∥ ≤ γ) (4)

hij =
1

|NB(xi)|
∑

k∈NB(Xi)

ukj (5)

At each iteration of FCM, along with the update related
to the clustering in MFC space, a ”smoothing” is effected
as in eq. (6) in order to take into account the localization of
each hammering sample, with p and q weighting exponents
on each fuzzy membership, regulating the contributions of
respective sources.

uij →
upijh

q
ij∑

k u
p
kjh

q
kj

(6)

4) Defuzzification: The obtained fuzzy clustering is fi-
nally converted to a crisp clustering by maximum mem-
bership: each hammering sample is assigned to the cluster
that has the highest fuzzy coefficient for that hammering
sample as in eq. (7), with ni being the cluster attributed to
hammering sample.

ni = argmax
j

(uij) (7)

C. Cluster identification

As stated earlier, the cluster occupying most of the tested
structure’s surface is identified as the non-defect cluster. In
order to evaluate the surface occupied by each cluster, a
weight wi is devised for each hammering sample based on
its physical distance to its nearest neighbour ri, as shown in
eq. (8) and eq. (9): this weight illustrates the area where that
hammering sample is relevant i.e. representative of.

ri =
1

2
∗ min
∀j∈D

∥∥li − lj
∥∥ (8)

wi = π ∗ r2i (9)

From there, weights associated for each centroid wcj can
be calculated as in eq. (10) by summing the weights of
hammering samples belonging to its cluster.



wck
=
∑

Xi∈cj

wi (10)

Finally, the centroid with the highest weight is identified as
the centroid of the non-defect cluster cnon-defect, as in eq. (11).

cnon-defect = cargmax
k

(wck
) (11)

A pseudo-algorithm briefly describing our proposed
method is shown in Algorithm (1).

Data: dataset of hammering samples D, number of
clusters K

Initialization;
foreach hammering sample Xi ∈ D do

assign random fuzzy coefficents uij ;
end
Loop;
while termination criterion is not met do

foreach cluster centroid cj do
conduct centroid update;
cj =

∑
i u

m
ijxi∑

i u
m
ij

end
foreach hammering sample Xi ∈ D do

conduct regular FCM update;
uij =

1∑N
l=1

d(xl,ci)

d(xj ,cj)

2/(m−1) ;

build spatial estimator;
hij =

1
|NB(Xi)|

∑
k∈NB(Xi)

ukj ;
balance results;

uij →
up
ijh

q
ij∑

k up
kjh

q
kj

end
end
Defuzzification;
foreach hammering sample Xi ∈ D do

assign sample to cluster with highest fuzzy
coefficient;
ni = argmax

j
(uij)

end
Identification;
foreach hammering sample Xi ∈ D do

find distance to nearest hammering sample ;
ri =

1
2 ∗min∀j∈D

∥∥li − lj
∥∥;

compute weight;
wi = π ∗ r2i ;

end
foreach cluster centroid cj do

sum member sample weights;
wcj =

∑
Xi∈cj

wi

end
cluster with highest weight is the non-defect cluster;
cnon-defect = cargmax

k
(wck

)

Algorithm 1: Pseudo algorithm of the proposed method.

Fig. 2: Experimental environment showing the concrete block
(A), hammer (B), camera (C) and microphone (D).

IV. EXPERIMENTAL SETUP

Several concrete test blocks containing man-made defects
simulating natural ones were made. For practical reasons,
each block contained a single defect so that the defect area
would be significant enough to be relevant. The experimental
environment is shown in Fig. 2: blocks were hit at several
locations to test our proposed method’s ability to robustly
discriminate defect hammering samples.

In our case, the location of each hammering sample was
a simple 2D position, collected by tracking a red-painted
hammer head using computer vision. The used hammer was a
KTC UDHT-2 (length 380 mm, weight 160 g, head diameter
16 mm), commonly used in hammering test by professionals.

Sound was recorded at 44.1 kHz using a Behringer
ECM8000 condenser microphone coupled with a Roland
UA25EX sound board and a laptop PC for data analysis.
A simple trigger was implemented to conduct clipping to
get each hammering sound as a single sample. Audio data
were first transformed into Fourier spectrum by Fast Fourier
Transform (FFT) using a window size of 1024 and then
MFCCs were computed using 26 triangular filters in the 300-
8000 Hz frequency band.

Number of clusters K was set to 2, p and q were set to
unity and γ was set so that every sample would have at least
one neighbour. Termination criterion was 100 iterations.

A. Single defect case

The concrete block used for the purpose of testing detec-
tion of a single defect is shown in Fig. 4(a). Referring to
the schematic presented in Fig. 3, α=30 deg., l=200 mm,
d=115.5 mm and L=230.9 mm. 462 hammering samples
were collected on this block, with a human operator con-
ducting the hammering action: 272 non-defect and 190 defect
samples.



Fig. 3: Generic schematic of the tested concrete blocks.
Defect area shown in red, dimensions in mm.

B. Multiple defect case
In order to test the multiple defect scenario, two concrete

blocks each containing a man-made delamination were put
together. Referring to the schematic presented in Fig. 3 and
to Fig. 5(a), for the block on the left, α=15 deg., d=40 mm,
l=149.3 mm and L=154.5 mm. For the block on the right,
α=15 deg., l=200 mm, d=53.6 mm and L=207.1 mm. 270
hammering samples were collected in total on these blocks,
with a human operator conducting the hammering action:
155 non-defect and 115 defect samples.

V. RESULTS

In order to quantify the classification performance, from
the amount of true positives TP (defect samples detected as
defects), true negatives TN (non-defect samples detected as
non-defects), false positives FP (non-defect samples detected
as defects) and false negatives FN (defect samples detected
as non-defects), the values of precision, recall and accuracy
that are normally used as performance indices of classifica-
tion were computed following eq. (12), eq. (13) and eq. (14).

precision =
TP

TP + FP
(12)

recall =
TP

TP + FN
(13)

accuracy =
TP + TN

TP + TN + FP + FN
(14)

Our previous method [7], FCM using Fourier spectrum,
FCM with spatial information using Fourier spectrum, FCM
using MFC and our proposed method (FCM with spatial
information using MFC) were tested so that the respective in-
fluence of spatial information and MFC on the classification
result could be clearly distinguished. Classification results
obtained in both the single defect and multiple defect case
are shown in Table I, with values of precision, recall and
accuracy in the form of percentage for better readability.

A. Single defect case

As shown in Fig. 4(b), our previous method, with threshold
value for detection manually selected in order to obtain the
best output, failed in this particular case of single defect
detection: almost no sample inside the red dashed frame,
indicating the defect area, has been classified as defect and
most of the left-side non-defect portion of the concrete block
was detected as defect. This could be explained by the high
defect to non-defect area ratio compared to previous concrete
blocks used in [7]: this would influence badly the model
generation and selection step.

If using Fourier spectrum, both FCM and FCM with
spatial information, Fig. 4(c) and Fig. 4(d), failed in the
cluster identification step too, although the clustering itself,
separating samples along the delimination, at the left side
of the defect area, does not seems totally irrelevant. In this
case, the addition of spatial information slightly influenced
the output by removing the small patches of samples wrongly
identified as defects on the right-side non-defect area.

Introduction of MFC significantly improved results for
FCM, as shown in Fig. 4(e): almost all samples inside the red
dashed frame and only a few outside it have been classified
as defects.

Adding spatial information (Fig. 4(f)) enabled to further
refine the result by removing the patch of mislabelled non-
defect samples outside the red dashed frame and achieving
high values of precision, recall and accuracy (100%, 98.95%
and 99.57% respectively) as shown in Table I.

B. Multiple defect case

As shown in Fig. 5(b), our previous method with manual
threshold exhibited a better result than in the single defect
case: most samples inside the right red dashed frame have
been correctly detected as defects as well as about half the
samples in the left red dashed frame, with few non-defects
classified as defects.

If using Fourier spectrum, both FCM and FCM with
spatial information, Fig. 5(c) and Fig. 5(d), showed irregular
quality outputs. This is most certainly due to the initialization
being random as well as the dataset’s composition: initial
conditions heavily influenced the output i.e. clusters were
not well separated. This issue was not apparent in the single
defect case where outputs of algorithms stayed constant over
100 runs.

Introduction of MFC again significantly improved results
for FCM, as shown in Fig. 5(e) and stabilized the output: only
a few samples have been mislabelled as defects outside the
frames and inside them, most samples have been detected as
defects. This would indicate that indeed, MFC space contains
well separated clusters, enabling FCM to return stable and
correct results even with random initialization [12].

Adding spatial information (Fig. 5(f)) gave an excellent
result, with a precision of 100%: samples labelled as defects
were all inside the defect area: the few isolated samples
wrongly detected as defects were removed and the detection
rate inside the defect area, especially on the edges where de-
laminations were deep and made detection harder, increased.



(a) Picture of tested concrete block (b) Previous method (c) FCM with Fourier Spectrum

(d) Spatial FCM with Fourier Spectrum (e) FCM with MFC (f) Spatial FCM with MFC

Fig. 4: Results for the single defect case, each node represents a hammering sample: green circles are samples classified as
non-defects, red dots are samples classified as defects. Red dashed frames show defect area (ground truth).

(a) Picture of tested concrete block (b) Previous method (c) FCM with Fourier Spectrum

(d) Spatial FCM with Fourier Spectrum (e) FCM with MFC (f) Spatial FCM with MFC

Fig. 5: Results for the multiple defect case, each node represents a hammering sample: green circles are samples classified
as non-defects, red dots are samples classified as defects. Red dashed frames show defect area (ground truth).



TABLE I: Performance of various methods in the single and multiple defect cases. Average, best (+) and worst (-) results
over 100 runs of the method when applicable are shown. Letters in the first column indicate correspondences with results
shown in Fig. 4 and Fig. 5.

Method Single defect (Fig. 4) Multiple defect (Fig. 5)
Precision Recall Accuracy Precision Recall Accuracy

Previous (b) 1.27% 0.5% 42.3% 86.9% 80.2% 86.4%

FCM with Fourier Spectrum (c)
0.5%

(+) 0.5%
(-) 0.5%

0.5%
(+) 0.5%
(-) 0.5%

17.7%
(+) 17.7%
(-) 17.7%

18.9%
(+) 100%

(-) 0%

12.6%
(+) 99.1%

(-) 0%

59.3%
(+) 91.2%
(-) 22.1%

Spatial FCM with Fourier Spectrum (d)
0%

(+) 0%
(-) 0%

0%
(+) 0%
(-) 0%

26.4%
(+) 26.4%
(-) 26.4%

97.6%
(+) 100%
(-) 51.6%

58.5%
(+) 95.7%
(-) 55.2%

81.6%
(+) 98.2%
(-) 58.8%

FCM with MFC (e)
93.9%

(+) 93.9%
(-) 93.9%

96.8%
(+) 96.8%
(-) 96.8%

96.1%
(+) 96.1%
(-) 96.1%

96.2%
(+) 96.2%
(-) 96.2%

86.2%
(+) 86.2%
(-) 86.2%

92.7%
(+) 92.7%
(-) 92.7%

Proposed (Spatial FCM with MFC) (f)
100%

(+) 100%
(-) 100%

99.0%
(+) 99.0%
(-) 99.0%

99.6%
(+) 99.6%
(-) 99.6%

100%
(+) 100%
(-) 100%

88.8%
(+) 88.8%
(-) 88.8%

95.2%
(+) 95.2%
(-) 95.2%

Again, compared to the results using our previous method,
with precision, recall and accuracy at 86.9%, 80.2% and
86.4% respectively, the improvement is noticeable: precision
at 100%, recall at 88.8% and accuracy at 95.2%, as shown
in Table I.

VI. CONCLUSIONS

The method described in this paper was able to exhibit
good performance in the presence of single and multiple
delaminations, outperforming our previous work in both
cases by replacing analysis in Fourier spectrum space with
MFC space and using the concept of spatial autocorrelation.
To this regard, introduction of MFC ultimately showed that
a definitive feature differentiating defect and non-defect
samples was caught, at least partly, in this feature and that
the addition of spatial information in the analysis helped in
the generation of clusters that match defect and non-defect
areas.

In this present paper, the tested multiple defect case was
composed of only delaminations and therefore the setting
K = 2 yielded satisfying results. If the defects were of
different nature, it can be expected that another setting for
K would be more appropriate, and in the field it can be
expected to find several types of defects i.e. defects other than
delaminations. Therefore, in future works, we would like to
produce automatic cluster number selection along with the
associated seeding procedure in order to tackle the case of
multiple defects of different nature. Furthermore, elaboration
of a feature specific to this task could further refine analysis.
Finally, tests on real, natural defects on concrete structures
in the field are also to be conducted.
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