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Abstract— Localization is an important task for mobile ser-
vice robots in indoor spaces. In this research, we propose
a novel technique for indoor localization using a spherical
camera. Spherical cameras can obtain a complete view of
the surroundings allowing the use of global environmental
information. We take advantage of this in order to estimate
camera position and the orientation with respect to a known
3D line map of an indoor environment, using a single image.
We robustly extract 2D line information from the spherical
image via spherical-gradient filtering and match it to 3D
line information in the line map. Our method requires no
information about the 3D-2D line correspondences. In order to
avoid a complicated six degrees of freedom (6 DoF) search for
position and orientation, we use a Manhattan world assumption
to decompose the line information in the image. The 6 DoF
localization process is divided into two phases. First, we estimate
the orientation by extracting the three principle directions from
the image. Then, the position is estimated by robustly matching
the distribution of lines between the image and the 3D model
via a spherical Hough representation. This decoupled search
can robustly localize a spherical camera using a single image,
as we demonstrate experimentally.

I. INTRODUCTION

Recently, the use of mobile service robots in indoor
spaces like offices, homes, etc. has become quite popular.
Localization is a very important task for all such applications.
Usual approaches like Global Positioning Systems (GPS)
are difficult to use in indoor spaces and cannot provide
information about six degrees of freedom (6 DoF) robot pose.
Thus, many approaches have been suggested towards local-
ization without GPS. Particularly, beacon-based localization
methods can be effective in indoor spaces. Sensors or fiducial
markers [1] can be placed at various positions and can help
in localizing the robot. However, they involve a modification
of the indoor space. Moreover, sensor-based approaches are
expensive to install and maintain over time. Wi-Fi has also
been shown to be effective for localization in indoor spaces,
especially in office environments where many hot spots are
available [2], and requires no environmental modifications.
However, its accuracy is too low for most practical purposes.
Furthermore, it cannot manage the orientation estimation
problem.

In contrast, camera-based methods can achieve high accu-
racy. Most approaches involving cameras use Visual Simul-
taneous Localization and Mapping (VSLAM) [3]. VSLAM
algorithms can not only localize the robot, but also generate a
3D map of the surrounding environment. However, typically,
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maps of indoor environments are known and there is no need
to generate them. Moreover, the maps generated by SLAM
need to be registered to pre-existing maps in order to achieve
global localization, which is not a trivial task [4].

In this research, we propose a global, camera-based indoor
localization method. Towards this purpose, we use a spherical
camera, which can capture information from all directions
and is much more effective at self-localization as compared
to a perspective camera. This is because the information
obtained by the perspective camera is limited by its small
field-of-view and is particularly ineffective in situations
where the camera is facing a wall or an obstacle.

We focus on a map-based localization method that makes
use of a 3D line map. Such line maps can be easily
obtained from the architectural blueprints or construction
CAD models of the environment. Since it is difficult to
include accurate color information in the model, we rely on
line information alone. Our proposed method estimates the
position and orientation of a spherical camera by matching
the line distributions in the Hough space from both arbitrary
poses in the 3D line map and a real 2D spherical camera
image. Our method requires no information about the 3D-
2D line correspondences. In our previous work [5], we
proposed a similar method that uses line information to
estimate spherical camera pose. However, the extraction of
lines inside the spherical image was manual. Moreover, the
6 DoF search-space was too large and a low-accuracy brute-
force search was used, which can fall into a local minimum.
In this work, we achieve fully automatic, global 6 DoF
localization of a spherical camera using a single image via
the following novel techniques:

• Automatic and robust detection of lines inside the
spherical image is performed via a spherical Hough
space. Spherical-gradient of image edge information is
used to filter the votes to the line distribution. This
makes the line detection and generation of the Hough
line distribution robust.

• The complex 6 DoF search for position and orientation
is decoupled using a Manhattan world assumption [6].
First, the orientation is estimated by decomposing the
Hough line distribution into the three principle direc-
tions. Then, the position is estimated by a 3 DoF particle
filter-based search that robustly compares the Hough
line distributions between the image and the line map.
This greatly reduces the search complexity and avoids
local minima.

• The length of each line subtended on the image is used
to weight it in order to reduce the influence of noise



and give more importance to longer lines that can be
detected accurately. This results in highly accurate and
robust position estimation.

II. RELATED WORK

There are many image localization methods in literature
that work by matching an image and a reference information
prepared in advance. These methods can be roughly classified
into two categories. The first category consists of methods
that save reference images of the environment into a memory
matrix and compare them to the image for which localization
is desired [7], [8]. Methods using a panoramic images [7] and
methods using omnidirectional cameras [8] have also been
proposed earlier. However, in these methods, it is necessary
to prepare images of environmental scenes in bulk, which is
tedious and time-consuming. The second category consists of
methods that use environmental models or maps as reference
information [9]–[13]. These methods have the advantage of
not needing to capture images of the environment in bulk as
representations of environmental scenes can be reproduced
from environmental models or maps. Ramalingam et al. [9]
proposed a method for estimating the positions and ori-
entations of omnidirectional camera images using skylines.
Ishizuka et al. [10] and Cham et al. [11] also proposed meth-
ods using line information of the known 3D environment
model. However, these methods can estimate only 3 DoF
pose for a vertically oriented camera and cannot be applied
for 6 DoF estimation problems. In contrast, Bleser et al. [12]
and Ji et al. [13] proposed methods for estimating 6 DoF
positions and orientations of perspective cameras using line
information of a known 3D environment model. However,
these methods can be applied to only a normal perspective
projection camera and cannot be applied to a spherical
camera. Moreover, the method of Ji et al. [13] assumed
a camera attached to the wall of an indoor environment,
considerably reducing the search space. There are methods
using information about 3D-2D line correspondences [14]–
[16]. However, these methods need line correspondences
which are difficult to obtain.

In this paper, a novel method of 6 DoF estimation of any
position and orientation of a camera using line information
from a single image is proposed. As far as we know, a
method whose problem setting is the same as the proposed
method does not exist.

III. OVERVIEW OF PROPOSED METHOD

An overview of our method is shown in Fig. 1. Our
proposed approach takes as input a pre-constructed 3D line
map of the indoor space and localizes a single spherical
image clicked anywhere inside it. The line map includes
doors, windows, edges, and other features that can be easily
generated from an architectural blueprint or a construction
model, which is usually available for indoor spaces. The
processing consists of three main steps. In the first step, lines
are extracted from the image using a randomized Hough
transform. The Hough space is designed to be a spherical
surface and also forms a ‘descriptor’ of the line distribution

Fig. 1. Approach of the proposed method. We extract lines and generate
descriptors from both a spherical image and arbitrary poses in the 3D model.
These descriptors are compared to estimate the position and orientation of
the spherical camera.

of the image. The same descriptor can be generated from
arbitrary positions and orientations in the line map. Each line
is weighted by the length that is subtended inside the image.
These descriptors can be compared by searching inside the
line map to localize the image. However, searching for 6
DoF pose is complicated. In order to simplify the search,
orientation and position search are decoupled.

Therefore, in the next step, the descriptor is decomposed
via RANdom SAmple Consensus (RANSAC) [17] to find
the three principle directions simultaneously, in accordance
to the Manhattan world assumption [6]. The three principle
directions generated from the image are compared with the
three principle directions of the line map in order to estimate
the orientation of the image.

In the final step, the position of the image is estimated by
robustly matching the descriptor formed from the image to
descriptors generated from many arbitrary positions in the
line map. The similarity between descriptors is evaluated
by Earth Mover’s Distance (EMD) which has the advantage
of being able to evaluate the similarity of multidimensional
distributions, as also used in [18]–[20]. The position at which
the computed EMD is the minimum in the environment is
the final position estimation result. This position is globally
searched via a particle filter.

IV. LINE DETECTION AND DESCRIPTOR GENERATION

A. Line Detection in Spherical Image

The first step in our approach is to detect line information
inside the spherical image. Line information is extracted by a
randomized Hough transform. A spherical image is obtained
as an equirectangular image as shown in Fig. 2. Lines in the
environment are marked in the equirectangular image and
the spherical image in red, as shown in Fig. 2.

In previous research, it has been shown that 3D lines in the
environment are projected as ‘great circles’ in the spherical
image [21]. Each great circle can be represented by a vector
perpendicular to its plane from the center of the sphere, as
shown in Fig. 3 (a). The direction of this vector can define
a line uniquely. Thus, the Hough space is defined using
a spherical surface of unit radius containing unit normal



(a) A spherical image (b) An equirectangular image
Fig. 2. 3D lines in the environment are represented as red lines in the
equirectangular image.

(a) Generation process (b) Generated descriptor

Fig. 3. Projection of a 3D line on a spherical image and transforming a
unit normal vector into the spherical Hough space. In a spherical image, 3D
lines in the environment are projected as great circles. n is a unit normal
vector with respect to the plane defined by the great circle. It defines a line
projected on the spherical image uniquely.

vectors that represent environmental lines. This distribution
of unit normal vectors defines the arrangement of lines inside
the spherical image and is unique to every position and
orientation of the spherical camera inside the environment.
Thus, it forms a ‘descriptor’ of the line information inside a
spherical image.

Lines inside the spherical image are detected based on
a randomized Hough transform. First, the edges inside
the spherical image are generated by a Gaussian blur (to
reduce the influence of noise) followed by Canny edge
detection [22]. Then, a randomized voting procedure is used
to generate votes to the spherical hough space, i.e. the
descriptor. In order to uniquely define a line, two edge points
are necessary. Thus, two edge points are selected at random
from the spherical image and their cross product is taken
to find the unit normal vector that defines the line between
the two edge points. At the end of the voting process, all
the votes close to each other are aggregated and averaged to
give the final descriptor.

Thus, the number of votes corresponds to the length of
the line inside the image and forms the ‘weight’ of each line
in this descriptor. A schematic of the descriptor generation
process is shown in Fig. 3 (b). The color of each point
represents the number of votes, i.e. the weight.

The above processes are executed on an equirectangular
representation of a spherical image. This results in high
distortion towards the top and the bottom of the image,
expanding the edges near these regions. If edge points are
randomly sampled from the equirectangular image, lines
towards the top and the bottom gain extra votes. Instead, it

Fig. 4. The 3D directions of the spherical gradient vectors of the points
that are on the same line are the same.

is necessary to randomly sample edge points uniformly from
a spherical surface. In order to achieve this, we sample the
vertical coordinates of the edge points in the equirectangular
image from the following distribution, to account for the
distortion:

v =
r

π
arccos (2p− 1) , (1)

where 0 < p < 1, r denotes length of vertical axis of the
equirectangular image, and v denotes the selected vertical
coordinate.

However, a naive sampling of two edge points leads
to many false votes, which can reduce the accuracy and
robustness of the line detection and descriptor generation.
In order to reduce the number of false votes, two conditions
are enforced on the randomly sampled edge points in order
to make sure that they are selected from the same line. The
first is a simple limitation of the distance between the two
points. If two points are far from each other, the probability
that they are on the same line is low.

The second is a constraint on the direction of the ‘spherical
gradients’ at two edge points. The spherical gradient is
estimated by calculating the image gradient in the equirect-
angular image and projecting it to the 3D spherical image
surface. It is tangential to the sphere. Spherical gradient
vectors of points on the same line should be oriented in
the 3D same direction on a sphere as can be seen in Fig. 4,
Thus, the normal vector derived from two edge points is only
voted to the spherical Hough space if their spherical gradient
directions are the same.

An example of line detection without these constraints is
shown in Fig. 5 (a) and the same result with these constraints
is shown in Fig. 5 (b). Colored curves indicate the detected
lines. In the case without constraints, it can be seen that
many lines are detected wrongly. Especially, vertical lines
with respect to the image are missed. In comparison, in the
case with constraints, the lines are detected accurately. These
results show that the two constraints on sampling improve
the accuracy of line detection.

B. Descriptors from Line Map

In order to estimate the position and orientation of the
spherical image in the environment, a similar descriptor
needs to be generated from the line map and compared with
the descriptor generated from the image. Thus, descriptors
need to be generated at any 6 DoF position from the
line map. An example of an indoor line map is shown in
Fig. 6(a). The objective is to extract a descriptor of line
information from the line map at a given camera position



(a) Without constraints (b) With constraints
Fig. 5. The result of line detection using the randomized Hough transform
without and with the two proposed constraints. The colored curves show
detected lines.

(a) An example of line
map

(b) Descriptor generation

Fig. 6. Schematic of transforming a 3D line in the line map to the spherical
Hough space. A cross product of two position vectors p1 and p2 of end
points of a line derive a normal vector n. The angle α is the weight for
computing EMD.

and orientation. All calculations are done with respect to this
position and orientation. As shown in Fig. 6, the descriptor
can be generated by directly transforming each line present
in the line map into the spherical Hough space. If p1 and
p2 are the two end points of a line, the unit normal vector
n representing it can be derived by a cross product of the
position vectors of these two points from the camera position.

Each unit normal vector is weighted with the angle α
subtended by its end points. This makes sure that the weight
of the line in the descriptor generated from the line map
corresponds to the number of votes obtained from the same
line if a spherical image was clicked at the same position.
The use of these weights raises the accuracy and robustness
while comparing descriptors generated from the model and
the image, as will be shown later via experiments.

V. DECOUPLED POSITION AND
ORIENTATION ESTIMATION

Once the descriptor is generated from the spherical image,
it can be compared to descriptors generated at arbitrary
positions and orientations from the line map in order to
localize the image. In our previous work [5], this was done
as a 6 DoF brute force search. Moreover, the weight system
mentioned in the previous section was not used. In such
a scenario, the probability of the search leading to a local
minimum is quite high and the accuracy is quite low. Global
search methods like particle filters [23], [24] can be used,
but can suffer from the curse of dimensionality and lead to a
prohibitively high search time. Instead, we propose the use
of the Manhattan world assumption [6] in order to decouple
the search for position and orientation.

According to the Manhattan world assumption [6], most
lines in an indoor space lie alone three principle directions.

Fig. 7. Lines whose directions are the same are transformed on the same
plane in the descriptor. For example, lines along with z axis are transformed
on the xy plane in the descriptor.

These principle directions can be estimated from the line
information extracted from the image and compared to the
principle directions of lines in the line map. Thus, the
orientation can be easily estimated, leaving a simpler 3 DoF
search for the position.

While constructing the line map, we place the origin in
a manner such that the axes lie in the principle directions
of the lines. Thus, it is only necessary to estimate the
principle directions in the image. This is done via a 3-
line RANSAC [17] that simultaneously estimates all three
directions, similar to the method followed in [25].

A. Extracting Principle Directions from Spherical Image

In order to extract the three principle directions from the
image, we make use of the fact that the unit normal vectors
obtained from all lines in the same principle direction lie
on the same plane, as shown in Fig. 7. For example, lines
which lie along with z axis induce unit normal vectors on the
xy plane. Under the Manhattan world assumption [6], there
should be three such orthogonal planes. Thus, the descriptor
generated from the image should have orthogonal three
planes. Extracting these three planes can directly estimate
the orientation of the image. This is because they depend on
the camera orientation with respect to the line map, which
fits a Manhattan world.

The three orthogonal planes are estimated by a
RANSAC [17] approach, which is commonly used to es-
timate parameters of a pre-defined model. In this case, the
‘model’ consists of three planes represented by their normal
vectors. In order to estimate three planes, at least three lines
are required. Thus, three unit normal vectors representing
their respective lines are randomly sampled from the image
descriptor and three planes are generated from them as
follows. Vector 1, which is normal to Plane 1 is obtained
by a cross product of any two of them. Vector 2, which is
normal to Plane 2 is obtained by a cross product of remaining
unit vector and Vector 1. Vector 3, which is normal to Plane
3 is computed by a cross product of Vector 1 and Vector
2. This generates three orthogonal planes that represent the
principle directions in accordance to the sampled lines.

The next step is to check for the how many other lines in
the descriptor satisfy these three planes, i.e., the number of
inliers. This is done by estimating whether the unit vector of
each line lies in any one of the planes. If the angle from the
closest plane is less than a pre-defined threshold, it is counted
to be an inlier. While calculating the number of inliers as



well, the weight system described in the previous section is
used in order to decrease the influence of noise and small
lines. The sampling is repeated a large number of times and
the three planes with the largest number of weighted inliers
are chosen as the final estimated orthogonal three vector.
The three planes estimated by this method are automatically
constructed to satisfy the orthogonality of the three principle
directions in the same manner as used in [25]. Note that our
proposed method is performed under the Manhattan world
assumption which assumes orthogonal principal directions.
Thus, in the case that an environment does not follow the
assumption, RANSAC may not be able to estimate the three
principal directions. In addition to RANSAC, a Mixture of
Gaussians approach [26] can be used to consider noise in line
detection process, which we will consider for future work.

Once the three planes have been estimated, the three
principle directions of the image are known. The three
principle directions in the line map are set in advance to
correspond to the axes of the origin. However, correspon-
dence of the three directions in the image to the three axes
needs to be known in order to uniquely estimate the image
orientation. This problem is simplified by the assumption
that most lines in the image are vertical, as can be seen
from Fig. 6(a). Hence, the direction with the highest number
of lines corresponds to the vertical direction. The ambiguity
of the other two directions (and their negatives) is resolved
using the descriptor generated in the previous section and
the same distance metric that is used for position estimation,
as described in the next section. If the environment does
not follow this assumption, e.g., in case of stairs, it is
also possible to estimate the correspondence of the three
directions at the same time by using the distance metric.
Once the three axes in the image are uniquely known, the
orientation of the image is uniquely estimated, similar to the
method in [25].

B. Position Estimation

After estimating the orientation of a camera, the position
can be estimated as a 3 DoF search by evaluating the
similarity of the descriptors generated from the spherical
image and from the line map. In this method, EMD is used
as an evaluation function to compute the similarity. In order
to globally search for the position of highest similarity, a
particle filter is applied.

1) Similarity Evaluation of Descriptors: In the proposed
approach, no correspondence of lines between the image and
the line map is estimated. Moreover, the detected lines may
have noise, mistakes, etc. Therefore, the evaluation function
needs to be robust. Hence, we adopt EMD as a metric
that can compute the similarity of the descriptors. EMD is
a measure of the distance between two multi-dimensional
distributions. It requires no correspondence and it measures
the ‘amount of work needed to convert one distribution
into another’. A simple example with a one-dimensional
distribution is shown in Fig. 8. Unlike the L2 norm, it
can take partial matches into account in a natural way. For
example, if two distributions are slightly displaced from each

Fig. 8. Schematic of EMD computation. EMD measures the amount of
minimum work needed to convert distribution 1 to distribution 2.

other, the L2 norm will result in a high error. However, the
EMD between them will remain small. In other words, it can
manage the noise and mistakes present in line detection.

In our case, the descriptors can be treated as spherical
distributions in order to evaluate their similarity using EMD.
The descriptor obtained from the spherical image is treated
as distribution 1 in Fig. 8 and descriptors obtained from
arbitrary positions in the line map are treated as distribution
2 in Fig. 8. In order to compute EMD between them, each
descriptor is converted to a set of clusters Q:

Q(1) =
[
(n

(1)
i , w

(1)
i ) | 1 ≦ i ≦ N (1)

]
, (2)

Q(2) =
[
(n

(2)
j , w

(2)
j ) | 1 ≦ j ≦ N (2)

]
, (3)

where n and w denote the unit normal vectors in the descrip-
tor and the weights that belongs to the clusters, respectively.
As explained earlier, the weight w for the descriptor from
the spherical image is the number of votes in the randomized
Hough transform, and for the descriptor from the line map,
the weight w is the angle between p1 and p2 as seen from
the camera center. This weighing scheme is effective because
lines closer to the image are projected to be longer and
are more important since they can be detected with greater
accuracy. The size of each cluster N is equal to number of
the unit normal vectors transformed into the spherical Hough
space. EMD is defined as follows:

EMD(Q(1),Q(2)) =
ΣN(1)

i=1 ΣN(2)

j=1 fijdij

ΣN(1)

i=1 ΣN(2)

j=1 fij
, (4)

where dij denotes a user-defined ground distance. The dis-
tance dij is the angle between two unit normal vectors
computed as follows:

dij = arccos(n
(1)
i · n(2)

j ). (5)

The variable fij denotes a ‘flow element’ that is derived
by solving the transportation problem using the weight w.
Additional details on EMD can be found in [18].

The minimum value of EMD is 0 and its value becomes
larger as similarity of the descriptors is lower. The position
of a camera is estimated as the pose at which the EMD
between the descriptor obtained from the spherical image
becomes the minimum with respect to the descriptor obtained
from a particular position in the line map. This position is
searched for using a particle filter [23], [24]. Particles are
generated at the orientation extracted in the previous step at
many random positions inside the line map, and propagated.
The final position is estimated by calculating a weighted sum
of all particles after convergence.



VI. EXPERIMENT

Three kind of experiments were conducted to demonstrate
the performance of our method.

In experiment 1, spherical images captured at five different
positions in two indoor environments were localized in
order to evaluate robustness and accuracy. In addition, many
spherical images generated at randomly selected poses in a
simulation environment were localized.

In experiment 2, a single spherical image from experi-
ment 1 was rotated 10 deg. at a time from -30 deg. to
30 deg. around the x axis and the position and orientation
were estimated at each step. Rotation of spherical images
causes large, non-linear changes in image content, making it
difficult to detect the same lines in each case. The purpose
of this experiment was to evaluate robustness for different
camera orientations.

In experiment 3, in order to compare with our previous
work [5], the results of our proposed method were compared
with results obtained using a non-weighted descriptor, and
results obtained from a 6 DoF brute-force search in a coarse-
to-fine scheme. 7 different trials were performed. For the
brute-force, coarse-to-fine search, the initial point was set
randomly in each trial. The minimum step size of the search
was 0.1 m for the position, and 1 deg in each axis for the
orientation. For the particle filter-based searches (with and
without the weights), 10,000 particles were set randomly in
each trial. The purpose of this experiment was to confirm the
robustness of global localization when using the proposed
weighing scheme and the particle filter-based search. In
each case, if the estimation error was within 0.3 m for the
position and within 5 deg in each axis for the orientation,
the estimation was defined to be successful. The success rate
and maximum error in all trial were evaluated.

A. Experimental Setup

The Ricoh Theta S spherical camera was used to obtain
spherical images for experiments. It directly captures an
equirectangular image and requires no external calibration.
Equirectangular images of resolution 1200 × 600 pixels
were used. In this experiment, we assume that the intrinsic
calibration and spherical image generation implemented by
the camera manufacturer is accurate enough to generate a
spherical image. A section of a building corridor and a
conference room were used as experimental environments.
A 3D environment models of the experimental environments
were generated by Simultaneous Localization and Mapping
(SLAM) using a mobile robot equipped with RGB-D sensor
in advance [13]. The line maps of the experimental envi-
ronments are shown in Figs. 9(a) and 9(b) were generated
by manually selecting the coordinates of the end points of
each line. They can also be obtained from an architectural
blueprints and are quite easy to generate. In experiment 1,
spherical images were captured at five points in both envi-
ronments at the same orientations. Spherical images captured
at point 3 in both environments are shown in Fig. 10. In
addition, a simulation environment representing an elevator
hall is shown in Fig. 11(a). The camera poses were localized

(a) The section of the corridor (b) The conference room

Fig. 9. The line maps of the experimental environments. Spherical images
were taken at points 1 to 5.

(a) Spherical image of the sec-
tion of the corridor

(b) Spherical image of the
conference room

Fig. 10. Spherical images captured at point 3 in both environments.

using spherical images generated at randomly selected points
and compared to the groundtruth. An example of gener-
ated spherical image is shown in Fig. 11(b). Localization
was done 100 times in the simulation environment. Lines
and principle directions were extracted in each image. The
threshold for RANSAC-based principle direction extraction
described in Section V-A was sin−1(0.05) radians.

B. Result and Discussion

An example of the intermediate result of line detection
and principle direction extraction is shown in Fig. 12. The
colorful lines denote detected lines and the pairs of red, blue,
and green points denote the three principle directions (i.e.
the vanishing points). The camera orientation was estimated
using these principle directions and the camera position was
searched for using a particle filter.

1) Experiment 1: The results of the experiments in the
section of the corridor and the conference room are shown
in Table I and II respectively. The values show the errors of
the estimated positions and orientations. The maximum error
obtained was 0.26 m for position and 3.6 deg for orientation
in one axis. If the model is very big, detected lines may
be shorter. Consequently, inaccuracy in line detection leads
to larger errors of position and orientation.In the simulation
environment, successful cases were defined as those having
maximum errors within 0.3 m for translation and 5 degrees
for rotation. Localization succeeded 95 out of 100 times.
Our proposed method succeeded in accurately estimating the
position and orientation of a spherical camera at different
positions.

It can be noticed that the estimation errors at point 3
were slightly larger than those at other points. This is
because the camera position at point 3 was more distant from
every wall in the environment as compared to other points.



(a) The 3D model of the
elevator hall with line map

(b) An example of a generated
spherical image

Fig. 11. The simulation environment and a spherical image.

Fig. 12. An example of the intermediate result of line detection and
principle direction extraction. The colored lines denote detected lines and
the pairs of red, blue, and green points denote the three principle directions.

Consequently, the detected lines were shorter, making line
detection inaccurate. This also corroborates the importance
of using the length of the line subtended as a weight for the
estimation (revisited in experiment 3).

Regarding the processing time, it totally takes about 30
minutes to estimate position and orientation of a single im-
age. The processing time changes depending on the number
of edge points or the size of the experimental environment.

In particular, as is often the case with dynamic envi-
ronment, occlusions can be present in the image. In order
to evaluate such situations, experiments were conducted
using images occluded by obstacles. The camera pose was
estimated using an image with a person who was standing
at about 1.5 m from the camera as shown in Fig. 13(a). The
maximum errors were 0.1 m for translation and 2 degrees
for rotation. The localization succeeded with small errors. In
addition, we estimated the camera pose using an image with
circles as occlusions, for example, as shown in Fig. 13(b).
The circles were positioned at random and the size of each
circle is 2 % of the area in the image. The number of circles
was set as 2, 4, 6, 8 and 10, and five trials were conducted
for each case. If the maximum errors were within 0.3 m for
translation and 5 degrees for rotation in any axis, the trial
was considered successful. The results are shown in Table III.

(a) Image with a person as an
occlusion

(b) An example image with
circles as occlusions

Fig. 13. Images with a person and circles as occlusions.

TABLE I
ERRORS OF ESTIMATION IN THE SECTION OF THE CORRIDOR

Pose x [m] y [m] z [m] ϕ [deg] θ [deg] ψ [deg]
1 0.02 0.06 0.01 0.3 1.4 1.3
2 0.04 0.06 0.01 0.4 1.1 0.7
3 0.24 0.07 0.09 2.9 0.2 3.0
4 0.06 0.01 0.01 0.9 1.7 2.1
5 0.09 0.02 0.05 0.2 0.9 1.3

TABLE II
ERRORS OF ESTIMATION IN THE CONFERENCE ROOM

Pose x [m] y [m] z [m] ϕ [deg] θ [deg] ψ [deg]
1 0.02 0.08 0.05 0.6 2.1 1.7
2 0.06 0.07 0.03 3.6 3.2 0.8
3 0.26 0.2 0.13 0.3 0.2 0.0
4 0.05 0.05 0.06 1.2 2.3 0.6
5 0.11 0.05 0.04 0.8 0.7 1.4

These results show the robustness of the proposed method
to occlusions.

2) Experiment 2: The results of experiment 2 are shown
in Table IV. The values show the errors of the estimated
positions and orientations. The maximum error obtained was
0.12 m for position and 2.5 deg for orientation in one
axis. These results indicate that estimation accuracy does
not depend on the camera orientation and is stable. This
is possible due to the sampling scheme adopted during the
randomized Hough voting in subsection IV-A. The errors
were stable for each orientation and thus, the robustness for
change of the orientation can be confirmed.

3) Experiment 3: The results of experiment 3 are shown
in Table V. They show the success rate and maximum error
of all the trials. The success rate of orientation estimation
using the descriptor with no weights was very low. In the
position search using particle filter, the orientation of the
particles was set as the ground truth. Even then, the particles
did not converge and we could not get the final result. This
shows that it is essential to weigh each line corresponding
to its length inside the image.

Meanwhile, the success rate of the brute-force, coarse-
to-fine search for 6 DoF localization was very low. This
is because the search can easily fall into a local minima
depending on the starting point. Meanwhile, in our proposed
method, the position and orientation estimation is decoupled
and the position is searched using a particle filter, which can
globally estimate the position. Falling into a local minima
can be avoided and the position and orientation can be
robustly estimated.

VII. CONCLUSION

In this research, a novel method for 6 DoF localization of
a spherical camera within a known 3D model i.e. line map of
an indoor environment was proposed. A novel descriptor was
designed based on a spherical Hough space for representation
of line information from both a 2D spherical image and a
3D line map without requiring information about the 3D-2D
line correspondences. The length of a line subtended inside
a spherical image was used as a weight. The orientation of
a spherical camera was estimated under a Manhattan world



TABLE III
NUMBER OF SUCCESSES USING IMAGES WITH OCCLUDING CIRCLES

Number of circles 2 4 6 8 10
Number of successes 5 4 4 4 3

TABLE IV
ERRORS OF ESTIMATION IN EXPERIMENT 2

Rotation x [m] y [m] z [m] ϕ [deg] θ [deg] ψ [deg]
-30 deg 0.07 0.04 0.01 1.0 1.2 1.8
-20 deg 0.04 0.04 0.04 0.9 1.1 0.3
-10 deg 0.03 0.02 0.03 0.5 0.6 0.1
10 deg 0.07 0.04 0.05 0.0 0.7 1.8
20 deg 0.12 0.07 0.01 0.9 0.3 2.0
30 deg 0.03 0.06 0.00 1.5 2.5 2.3

assumption. Then, in order to search for the position, EMD
was used to effectively and robustly compute the similarity
between these descriptors and a particle filter-based search
was used. This decoupled 6 DoF estimation was able to
avoid falling a local minima effectively. Experiments were
conducted in a real environment and the results demonstrated
that our proposed method could effectively estimate the 6
DoF pose of a spherical camera up to about 0.26 m and
3.6 deg in each axis within a 3D model using a single spher-
ical image. This research demonstrated that the weighting of
each line is crucial for an adequate matching. Hence, in order
to estimate the camera pose more robustly, we will develop
a weighting scheme using surrounding color information. In
this study, we focused on an indoor environment. Future
work will also extend the developed method to outdoor
environments.
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