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Abstract: In this paper, we present a novel probabilistic three-dimensional (3D) mapping
framework that uses acoustic images captured in an underwater environment. Acoustic camera
is a forward-looking imaging sonar that is commonly used in underwater inspection recently;
however, the loss of elevation angle information makes it difficult to get a better understanding
of underwater environment. To cope with this, we apply a probabilistic occupancy mapping
framework with a novel inverse sensor model suitable for the acoustic camera in order to
reconstruct the underwater environment in volumetric presentation. The simulations and
experimental results demonstrate that our mapping framework for the acoustic camera can
reconstruct dense 3D model of underwater targets successfully.
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1. INTRODUCTION

In recent years, underwater operations such as mainte-
nance, ship hull inspection, and construction become much
more important these days; however, hazards may prohibit
human access (e.g., the Fukushima Daiichi nuclear power
station, which has been the crisis since the 2011 earth-
quake off the Pacific coast of Tohoku in the east Japan).
Moreover, the limited field of vision due to turbidity and
lack of illumination makes it difficult for underwater op-
erations. Therefore, in order to fulfill underwater tasks,
reconstruction process of three-dimensional (3D) underwa-
ter environment by robots such as autonomous underwater
vehicles (AUVs) or remotely operated underwater vehicles
(ROVs) is necessary.

Sonars are useful for sensing an underwater environment
since they are less affected by turbidity, illumination, and
absorption as optical sensors or laser sensors. There exist a
few studies on 3D underwater environment reconstruction
using the sonars such as side scan sonars (SSSs) and
mechanically scanned imaging sonars (MSISs). Sun et al.
employed an approach based on Markov random field
(MRF) that detects shadow using SSS to reconstruct
3D model of sea floor (Sun et al. (2008)). Kwon et al.
applied occupancy mapping theory on MSISs to realize 3D
reconstruction of underwater objects (Kwon et al. (2017)).
However, these sonar sensors are facing with problems like
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inflexibility or low resolution. SSSs are usually mounted
on a ship and they cannot change their pose. Thus, the
ship itself has to move forward to measure the surrounding
environment. In other words, it is not suitable to be
mounted on AUVs or ROVs with high degrees of freedom.
MSISs are being used in relatively small AUVs or ROVs
thanks to its small size, however, they have comparatively
low resolutions and very low sampling rates.

Recently, the development of acoustic camera, such as dual
frequency identification sonar (DIDSON) and adaptive
resolution imaging sonar (ARIS) which can generate high-
resolution and wide-range image, facilitates understanding
of underwater situation (Belcher et al. (2002)). This kind
of sensor is relatively small that is easy to be mounted on
AUVs or ROVs and can gather information of a larger area
much faster. However, wide fan-shape beam is emitted and
information lost occurs during imaging, which makes 3D
reconstruction difficult. For example, we are facing with
the uncertainty of 14 deg in case of ARIS EXPLORER
3000 (Sound Metrics) which is the latest-model acoustic
camera.

To the best of our knowledge, most previous studies
that achieve 3D reconstruction using acoustic cameras are
feature-based method because it is possible to calculate
3D coordinate values through matching of corresponding
feature points extracted from multiple acoustic images,
like stereo matching in optical images. Corners or lines are
usually used as features for 3D reconstruction. Mai et al.
achieved 3D reconstruction by tracing such features using



extended Kalman filter (EKF) (Mai et al. (2017a))(Mai
et al. (2017b)). However, automatically detecting such
features on the acoustic images is not as easy as the optical
images. Moreover, this kind of sparse 3D model consisting
of such low-level features is not suitable for representing
complex objects.

To solve this problem, occupancy grid mapping theory
can be considered as a way for building dense 3D volu-
metric representation. In 2005, Fairfield et al. successfully
inspected a sinkhole in Mexico using the occupancy grid
mapping theory with pencil beams which proves the effec-
tiveness of such volumetric representation in underwater
environment (Fairfield et al. (2005)). In 2016, Teixeira et
al. accomplished 3D reconstruction of shiphull consisting
of volumetric submaps using acoustic images (Teixeira
et al. (2016)). However, when processing time of flight
(TOF) data from acoustic images, either the first or the
strongest return that is above a certain threshold is kept
that too many data are discarded, which is not efficient.
Guerneve et al. also applied grid-based method to acoustic
camera, but their method is not fully probabilistic and
robot can only be moved in z-axis (i.e., height direction)
which is not useful for unmanned robot with arbitrary
motion and not robust enough to noise (Guerneve and
Petillot (2015)).

In this paper, we also use the volumetric 3D model for
reconstruction of underwater environment, and Bayesian
inference is used to update the probability of each voxel
constituting the 3D model. Here, in order to make the
occupancy mapping theory more suitable for acoustic cam-
era, we design a novel inverse sensor model. By using occu-
pancy mapping theory and applying a novel inverse sensor
model, it is possible to reconstruct a dense underwater
3D environment robustly and efficiently from arbitrary
acoustic views.

The remainder of this paper is organized as follows.
Section 2 explains principles of acoustic camera. Section 3
describes 3D occupancy mapping with acoustic camera.
The effectiveness of the proposed 3D mapping framework
is evaluated with the experiment results in Section 4.
Section 5 gives conclusions and future works of this paper.

2. PRINCIPLES OF ACOUSTIC CAMERA

An acoustic camera can sense a wide range of 3D area and
generate images like an optical camera; however, the imag-
ing principle is totally different. For optical camera, depth
information is lost. On the contrary, for acoustic camera,
elevation angle information is lost. This phenomenon can
be explained by the model described in this section.

Acoustic cameras insonify a fan-shape acoustic wave in
the forward direction with the azimuth angle θmax and
elevation angle φmax within the scope of the maximum
range of rmax as shown in Fig. 1a. Once the acoustic wave
hits underwater objects, it is reflected back to the sensor
because of backscattering. As shown in Fig. 1b, acoustic
camera is a multiple beam sonar that the 3D acoustic
wave from the acoustic camera can be separated into 2D
beam slices in and for each beam, only range information is
acquirable. The result is that elevation angle information
is lost.

r
max

max

max

r
m

in

Xc

Yc

Zc

Acoustic 
camera

(a)

Azimuth angle direction

(b)

Fig. 1. Acoustic projection model:(a) shows the geomet-
rical model of the acoustic image and (b) illustrates
beam slices in the acoustic camera.

Imaging geometry of the acoustic camera is like different
points in the 3D sensing area with the same range r and
the same azimuth angle θ are mapped at the same pixel
on the 2D acoustic image. In other words, points can be
represented by (r, θ, φ) in polar coordinate (i.e., (x, y, z)
in Cartesian coordinate) are mapped into (r, θ) in the 2D
acoustic image. Conversely, if the elevation angles φ of each
point are recovered, we can reconstruct 3D point cloud in
the 3D sensing area for each measurement. More details
on the principles of the acoustic camera can be found in
(Kwak et al. (2015)).

3. 3D RECONSTRUCTION FRAMEWORK

Figure 2 shows overview of our 3D reconstruction frame-
work. The input and output of our framework are:

Input :

• Acoustic images from multiple viewpoints
• Corresponding six degrees of freedom (6-DOF) cam-

era poses

Output :

• Dense 3D reconstruction of an underwater environ-
ment

The process is divided into four steps: image segmentation,
generation of input point cloud, 3D occupancy mapping
and refinement. Detailed processes for each step are ex-
plained in the next subsections.



Fig. 2. Overview of 3D environment reconstruction framework based on occupancy mapping.
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Fig. 3. Image segmentation process: (a) original acoustic
image, (b) is the image after binarization and (c)
shows segmentation process to classify pixels into oc-
cupied, free and unknown areas which are represented
by red, green and blue respectively.

3.1 Image Segmentation

After acoustic images are inputted into the system, they
are binarized by a threshold set preliminary. Figure 3b
shows an acoustic image after binarization process. The
binarized acoustic image is then segmented into three areas
which are defined as occupied, free and unknown. As we
mentioned above, the acoustic wave can be discretized into
128 2D beams in the azimuth angle direction. Considering
one beam, every pixel in this radial direction is searched
and labeled depending on its intensity and the relationship
with several adjacent pixels. Algorithm 1 describes an
algorithm for image segmentation process. Here, n denotes
the pixel numbers in radial directions and j represents the
pixel index in one radial direction from sensor origin. I
is the intensity value of each pixel. If j is bigger than n,
Ij equals zero. Figure 3 shows the acoustic image after
segmentation, where red area represents occupied, green
area represents free and blue area represents unknown.

3.2 Point Cloud Generation

After processing image segmentation, pixel data of each
group from all images are converted to input point clouds
by generating elevation angles φ. To begin with, each pixel
in acoustic image is represented by (r, θ). φ is generated
as

φj =
φmax

2
− φmaxj

M
. (1)

Here, the elevation direction is equally separated by M
radian intervals. Thus, j is integer zero to M . φmax denotes

Algorithm 1 Image segmentation

Input:Acoustic image
Output:Classified pixels
while i<128 do

Flag = 0
while j <n do

if Ij>0 then
return occupied pixels

else if Ij ≤ 0 and Flag = 0 then
return free pixels

else
return unknown pixels

end if
if Ij>0 and Ij+1,Ij+2, . . . ,Ij+k ≤ 0 then

Flag = 1
end if
if j + k>n then

Flag = 1
end if
j ← j + 1

end while
i← i + 1

end while

the sensing scope of the acoustic camera in elevation angle
direction. Then, the generated points are converted from
the camera spherical coordinates (r, θ, φ) to the camera
Cartesian coordinates (xc, yc, zc) as:

[
xc
yc
zc

]
=

[
r cosφ sin θ
r cosφ cos θ
r sinφ

]
. (2)

From the camera Cartesian coordinate, the points are
then transformed to the World Cartesian coordinate
(xw, yw, zw) as:

[xw yw zw 1]
>

=cθcφ cφsθsψ − cψsφ sψsφ + cψcφsθ x
cθsφ cψcφ + sθsψsφ cψsθsφ − cφsψ y
−sθ cθsψ cθcψ z

0 0 0 1


xcyczc

1

 , (3)

where (x, y, z, ψ, θ, φ) indicates the 6-DOF pose of the
acoustic camera (i.e., camera viewpoint). Here, s and c
represent sine and cosine functions, respectively.

Figures 4a and 4b show an example of input acoustic image
after segmentation process and corresponding 3D point
cloud data through the generation process above. The
point cloud is also divided into three groups by labeling.
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Fig. 4. Generation process of input point cloud data: (a)
segmented acoustic image and (b) generated 3D point
cloud data.

Here, green, red and blue respectively represent the free,
occupied and unknown groups for one measurement.

After the 3D point cloud data are generated, the point
clouds are down sampled by voxel grid filter (Rusu and
Cousins (2011)) in order to prevent over updating of the
probability in next occupancy mapping process—given
that if there are k points existing in one voxel, this voxel
is going to be updated by k times, which will not only
increase computing burden, but also make the probability
too high or too low.

3.3 3D Occupancy Mapping

The typical occupancy grid mapping algorithm is used
to realize 3D reconstruction from point cloud data (Elfes
(1989)). We use OctoMap library which produces Octree
structure based 3D model in order to implement occu-
pancy mapping (Hornung et al. (2013)).

Bayesian inference We define point cloud data from
discrete time step t = 1 to t = T as C1, C2, . . . , CT .
Here, the time step has the same meaning as the index
of the image used. 3D environment map is denoted as m
and each voxel is denoted as mi. Under an assumption
that each voxel is conditionally independent of one another
given measurements, the posterior probability of the map
information can be written as follows:

p(m|C1:t) =
∏
i

p(mi|C1:t). (4)

By using Bayesian inference, p(mi|C1:t) can be calculated
as:

p(mi|C1:t) =
p(mi|Ct)p(Ct)p(mi|C1:t−1)

p(mi)p(Ct|C1, . . . , Ct−1)
. (5)

To simplify calculation, we define L(x) using log odds as
follows:

L(x) = log

[
P (x)

1− P (x)

]
. (6)

Therefore, Eq. (5) can be written as:

L(mi|C1:t) = L(mi|C1:t−1) + L(mi|Ct), (7)

where L(mi|Ct) is called inverse sensor model. Each voxel
has a probability of occupancy that after setting a thresh-
old, voxels can be classified into occupied, free and un-
known. Normally, occupied voxels are the dense 3D recon-
struction result.

Algorithm 2 Inverse sensor model

Input:3D points
Output:L(mi|Ct)
if It is an occupied 3D point then

return loccupied
end if
if It is an free 3D point then

return lfree
end if
if It is an unknown 3D point then

return lunknown

end if
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Fig. 5. Refinement process: (a) raw 3D reconstruction
result and (b) 3D reconstruction result after filtering.

Inverse sensor model In order to apply acoustic camera
images to occupancy mapping, a novel inverse sensor
model is designed based on principles of acoustic camera.
The inverse sensor model can be represented as:

L(mi|Ct) =


loccupied

lfree

lunknown

(8)

and calculated by Algorithm 2.

In inverse sensor model, we take acoustic shadow into
consideration and several assumptions below are made for
the inverse sensor model. Here, we define | lfree

loccupied
| as ratio

of empty.

• Free space is more likely to be free that ratio of empty
> 1.

• Acoustic shadows are difficult to be distinguished
from background, they are thought to be mixed with
background.

• Since shadows are not detected from images, areas
that shadows are supposed to be existed is processed
as unknown.

Ratio of empty > 1 is important that if there is no
reflection signal in one radial direction, we can be sure
that there is nothing in this direction. On the other
hand, occupied measurement may conclude plenty of “false
measurement” due to the point cloud generation method.
Assume that lfree = −2.2 with an occupancy probability
of 0.1, loccupied = 0.41 with an occupancy probability
of 0.6 and the threshold of occupancy probability is 0.5
which is zero in log odds. If we acquired a measurement
that this voxel is free, we need more than five occupied
measurements to change the state of this voxel from free to
occupied. This is also the reason why we take shadow into
consideration. If one shadow area is simply processed as
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Fig. 6. Simulation experiment with virtual images: (a) is the simulation environment and (b) shows examples of the
generated virtual images.
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Fig. 7. Simulation result: (a) is the dense 3D reconstruction
result of complex environment and (b) renders 3D
reconstruction result and model used as ground truth
together.

free, we need plenty of measurements to change the state of
these voxels which will make our reconstruction sometimes
unsuccessful. If ratio of empty → ∞ occupancy mapping
can be seen as a paradigm of space carving (Klingensmith
et al. (2014))(Aykin and Negahdaripour (2017)).

3.4 Refinement

After generating 3D occupancy map, noise exists which
will degenerate our reconstruction result. Therefore, we
exploit radius outlier filter (Rusu and Cousins (2011)),
which is one of the simplest refinement method. Figure
5 shows our raw result and the result after filtering.

4. EXPERIMENT

To prove the feasibility of our 3D reconstruction frame-
work, simulation experiments were conducted with virtual
acoustic images generated from acoustic camera imaging
simulator we developed (Kwak et al. (2015)). First, we
tried the 3D reconstruction of some simple objects as
Fig. 5 which performed successfully. Then, we attempted
our framework on complex environment. We also applied
real experiment data to our framework to verify its effec-
tiveness.

4.1 Simulation

Figure 6b shows the complex simulation environment we
designed which is generated by structure from motion
(SfM). The size of the simulation environment is 1750 W ×
1500 D × 650 H mm3 including six artificial objects fixed
on boards. Here, the simulated acoustic camera viewpoints
(i.e., 6-DOF poses) are represented in yellow boxes as
Fig. 6a, where blue, green and red axes represent x, y
and z axes, respectively.

Camera motion may affect the result of 3D reconstruc-
tion (Huang and Kaess (2015))(Aykin and Negahdaripour
(2017)). Elevation angle has an uncertainty of 14 deg that
we have to narrow the occupied points using intersection.
Arcs with uncertainty from different observations are bet-
ter to intersect rather than coincide or parallel. In other
words, translation of z-axis, rotations of pitch (i.e., y-
axis rotation) and roll (i.e., x-axis rotation) are relatively
effective. This is not a necessary condition, but if one
observation merely increases the occupied possibility of
voxels supposed to be free, we need more observations to
decrease the possibility of these voxels to get a correct
final result. For single motion, roll rotation can be the
most effective way for leading to intersection of arcs with
uncertainty.

Camera motion is generated as:

• Moving the acoustic camera around the environment
to be inspected and stop at an arbitrary appropriate
position.
• Making roll rotation (i.e., x-axis rotation), storing

images and poses.
• Moving the acoustic camera again to another arbi-

trary appropriate position.

Some corresponding simulated images are illustrated in
Fig. 6b. Note that we treated these images as real image
data from multiple acoustic camera viewpoints in our
simulation experiment. 3D reconstruction process was per-
formed using simulation data mentioned above. As shown
in Fig. 7, we reconstruct the environment successfully. In
Fig. 7b, dense 3D reconstruction result and model we used
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Fig. 8. Real experiment using ARIS EXPLORER 3000: (a) shows the experiment environment. Acoustic camera ARIS
EXPLORER 3000 is mounted on a pan tilt which is fixed to steel bar and (b) shows examples of the captured real
images.
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Fig. 9. Dense 3D reconstruction result with real acoustic
images captured by roll rotation in one position.

as ground truth are rendered simultaneously. From this
result, we confirmed the effectiveness of our framework.

As for computing cost, each acoustic image is processed in
about 2 s using an Intel Core i7 vPro. 8,960,000 points are
generated from one image and after applying voxel grid
filter, about 1,000,000 points left for updating occupancy
map. The resolution of voxels is 20 mm. For one roll
rotation, image is taken every 5 deg so that 72 images
are used as input data from one position. However, it
is possible to take less images from one position. The
computing time shows that this algorithm can generate
map online.

4.2 Real Data

We also applied some real experiment data to our frame-
work using ARIS EXPLORER 3000 which is a state-of-
the-art acoustic camera. In order to verify the validity of
our method, first of all, we took 27 acoustic images in a
real underwater environment as shown in Fig. 8. Triangle
and square objects were fixed on a wood board and were
submerged by turbid water. Acoustic camera was mounted
on a pan-tilt camera mounting module which can make roll
and pitch rotation. In this experiment, position of acoustic
camera was fixed and pitch angle was kept at about 30 deg.

To inspect these objects, roll rotation, from −60 deg to
60 deg was carried out for one time. It is worth mentioning
that images are binarized by conventional Otsu’s method
(Otsu (1979)). The dense 3D reconstruction result is shown
in Fig. 9. We can recognize objects and environment suc-
cessfully. More viewpoints are necessary for a better result
which is one of our future work.

5. CONCLUSION

In this paper, we applied a probabilistic method to realize
3D reconstruction from acoustic images with unknown
elevation angles. A new inverse sensor model is designed to
apply acoustic image data to occupancy mapping theory.
Simulation is implemented and real experiment data is
also used to confirm the feasibility of our algorithm. Our
proposed framework can generate any shape of objects
without relying on features.

Future work related to this paper will involve valuing
our result quantitatively and mounting acoustic camera
on an underwater robot to carry out real experiment
with more viewpoints. Because it is difficult to acquire
real value of robot pose, localization method may be
necessary to get a precise result that a method to realize
simultaneous localization and mapping (SLAM) will be
implemented. Furthermore, after 3D reconstruction, 3D
recognition is also very important for automatic inspection
of the underwater environment. Finally, further proof is
also necessary to find out whether our algorithm works on
real sea bed with non-artificial objects.
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