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Abstract: This paper presents a novel identification procedure. The proposed method consists
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have been performed to show the validity of the new methodology.
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1. INTRODUCTION

This work deals with the problem of extracting linear
relations from a set of data affected by additive noise.
Most of the algorithms proposed in the literature (e.g.,
least mean squares) seek a single solution for this prob-
lem. This uniqueness can be achieved only by introducing
a priori assumptions in the estimation procedure whose
validity cannot be ascertained on data. A complete anal-
ysis of different estimation schemes has been proposed
by Kalman (1982), Söderström and Stoica (1989), Ljung
(1998), Söderström (2007, 2012), Isermann and Münchhof
(2014). Further analysis of the current state of the art of
system identification can be found in (Ljung, 2010) while
newer trends are presented in the survey paper (Pillonetto
et al., 2014).
The most important feature of the Algebraic Frisch
Scheme 1 , originally introduced by Frisch (1934), is to
employ loose assumptions leading to a whole family of
solutions compatible with a given set of data rather
than a unique solution. In this context, according to
Kalman (1982), this estimation scheme has fewer preju-
dices with respect to most other identification procedures.
The properties of this scheme and its loci of solutions
have been deeply analyzed and developed in (Guidorzi,
1991); (Guidorzi, 1995); (Guidorzi et al., 2008). The Frisch
scheme has been also extended (in the dynamic case) for
the identification of multivariable EIV models (Diversi and
Guidorzi, 2017). Under assumptions that will be discussed
in the following sections, if only one underlying linear
relation is present, the Frisch estimation scheme leads to
a convex set of solutions represented by a simplex in an
Euclidean space, where any point of the simplex represents
a feasible solution in the context of the Frisch scheme.
This peculiarity introduces a post-identification degree of
freedom in the selection of the parameters among all the

1 In this paper we always deal with the algebraic Frisch scheme.
This specification will be omitted from now on

feasible solutions compatible with the hypothesis of the
Frisch scheme. This aspect may represent a resource in en-
gineering contexts since the knowledge of physical aspects
of the system to be identified can help in this selection,
mixing a pure black-box estimation step with a reasonable
white-box selection procedure.

The main contribution of this paper is the introduction of
a novel recursive estimation scheme based on the Frisch
scheme, which is able to restrict the searching space of
solutions with respect to the traditional batch approach
without introducing additional assumptions. The proposed
method is based on the idea of performing several identi-
fications of the same process using partial data sets at
different times to obtain a smaller final solution space.
Using the proposed algorithm there is a consistent im-
provement of the estimation precision with respect to
the standard Frisch scheme in only few iterations. This
property makes the proposed algorithm suitable for real-
time identification.
The Particle-based Recursive Frisch (PRF) scheme is pre-
sented and applied to a simple EIV model to prove its
effectiveness. The PRF estimation scheme can be suc-
cessfully used in a robust control framework as a robust
controller could be designed in such a way to deal with
model uncertainties ranging in the space of admissible
solutions identified with the PRF scheme. This paper is
organized as follows: Sec. 2 introduces some background
on EIV schemes, with a particular insight on the Frisch
scheme, enlightening the properties of its solutions spaces.
In Sec. 3 the proposed PRF identification procedure is
presented. Simulation experiments and results are shown
in Sec. 4. In Sec. 5 conclusions and future work are drawn.

2. THE FRISCH ESTIMATION SCHEME:
BACKGROUND

As every systematic procedure that deduces a model
starting from data affected by errors, the Frisch Scheme



relies on the modification of the observed data. This is
mainly due to the fact that a deterministic mathematical
relation able to fit all the observations does not exist. The
main difference between different estimation schemes is the
set of a priori assumptions that are necessary to estimate
linear relations from noisy data. Different schemes use
different assumptions and modify observations in different
ways.

2.1 Common Assumptions for EIV Estimation Schemes

Consider the linear relation

α1x1 + α2x2 + · · ·+ αnxn = 0 (1)

which relates n variables xi by means of n coefficients αi.
If m measurements of the variables have been collected,
the observation matrix can be defined as follows

X =


x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn

 , X ∈ IRm×n (2)

Then, equation (1) can be rewritten as

XA = 0 (3)

where A = (α1 α2 · · · αn)
T

. In general, A ∈ IRn×q where
q is the number of independent linear relations linking
the data. By defining the sample covariance matrix as

Σ = XT X
m , (3) is equivalent to

ΣA = 0 (4)

since Σ and X share the same null space. Assume now
that noise affects the variables in an additive way, i.e.,
xi = x̂i + x̃i where x̂i is the exact value of the variable
and x̃i is its corresponding noise. Due to this noise, Σ
is positive definite and thus it is impossible to extract
from its null space any linear relation, represented by
matrix A. This can only be achieved by modifying the
matrix Σ. Under the common assumptions of EIV schemes
which relies in zero mean value of both noise and noiseless
samples and in orthogonality between them, see (Guidorzi

et al., 2008), it can be derived that Σ = Σ̂ + Σ̃, for

Σ̂ = X̂T X̂
m and Σ̃ = X̃T X̃

m , with X̂, X̃ both defined as in
(2) by replacing xi with x̂i and x̃i. The problem of finding
linear relations compatible with noisy data can be then
formulated as follows:

EIV Estimation Problem (Kalman, 1982) Given Σ, de-

termine Σ̃ such that

Σ̂ = Σ− Σ̃ ≥ 0 , det(Σ̂) = 0 (5)

Any base of null(Σ̂) will span a space describing a set of
linear relations compatible with the data and the assump-
tions, i.e. a solution for Σ̂A = 0 can be found.
Differences among estimation schemes lie in the assump-
tion made on the noise variables and consequently on Σ̃.
Two estimation schemes of interest in this work are now
described.

2.2 Ordinary Least Squares (OLS)

This estimation scheme assumes only one variable affected
by noise, while the remaining ones are noise-free. If noise
affects the i-th variable, it follows that

Σ̃ = diag
(
0, · · · , 0, σ̃2

i , 0, · · · , 0
)

(6)

where σ̃2
i is the variance of x̃i. The solution of the estima-

tion problem is given by

σ̃2
i =

det (Σ)

det (Σi)
(7)

where Σi is the matrix built by deleting the i-th row
and the i-th column of Σ, see (Guidorzi, 2003). In fact
σ̃2
i , as defined in (7), represents the maximum amount of

noise compatible with the condition presented in (5). Some
important aspects of this estimation scheme are:

• In general, the noisy variable is the one considered as
linearly dependent, whose coefficient is normalized to
1.

• The OLS solutions lead to the minimization of the
squared estimation error:

A = arg min
(
eTe

)
(8)

where
eTe = ‖ [X]i −XiA‖2 (9)

being [X]i the i-th column of X and Xi obtained
by deleting and the i-th column of X. The elements
of A ∈ IRn−1 define the dependence relation of the
orthogonal projection of [X]i on the subspace spanned
by the columns of Xi from these vectors. When no
assumptions are made about the noisy variable, the
OLS scheme leads to n different solutions.
• When the noisy variable is known to be the i-th,

the estimation problem can be reformulated in the
most common non-kernel form: [X]i = XiA. In this
case the minimization of the squared error is simply
obtained in the pseudo-inverse closed form solution
A = (XT

i Xi)
−1XT

i [Xi], which is unique.

2.3 The Frisch Scheme

This scheme is based on the assumption of mutual inde-
pendence of the noise samples, i.e. the error covariance
matrix is in the form

Σ̃ = diag
(
σ̃2
1 , σ̃

2
2 , · · · , σ̃2

n

)
(10)

Given a sample covariance matrix Σ, every diagonal ma-
trix Σ̃ satisfying (5) is a solution of the Frisch estimation
scheme. Notice that the n OLS solutions are included.
This means that the a priori assumptions made for the
Frisch scheme are milder and more general than those of
any estimator providing a single solution like the OLS. On
the other hand, the computation of solutions in closed-
form is more difficult, since there are infinite possible
solutions. To overcome this problem, we use some of the
results reported in (Guidorzi et al., 2008), in particular,
the following definition and theorem.

Definition 1. The maximum corank of a sample covariance
matrix Σ is defined as the maximal number of linear rela-
tions that can be extracted from Σ under the assumptions
of the Frisch scheme and it is denoted by MaxcorF (Σ):

MaxcorF (Σ) := max
Σ̃∈D

{
dim

(
null(Σ̂)

)}
(11)

being D the set of all the diagonal matrices satisfying (5),
i.e., all the solutions of the Frisch scheme.

Theorem 2. (Guidorzi et al., 2008) If MaxcorF (Σ) = 1,
the coefficient vectors A ∈ IRn−1 of all linear relations
compatible with the Frisch scheme lie (by normalizing



one of the coefficients to 1) inside a simplex S in the
parameter space whose vertices are defined by the n OLS
solutions. Furthermore, all the points of the simplex in the
parameter space are linked by a one-to-one relation to all
the solutions of the Frisch scheme.

Under the hypothesis of the latter theorem, the solution
space (i.e., the simplex) can be easily derived by computing
the n OLS solutions. However, in order to select one
solution, additional information must be present (see e.g.,
(Guidorzi et al., 2008)).
The main contribution of this work is the development of
an algorithm which aims at reducing the solution space.
The decrease in size is intended with respect to the simplex
that would merge by computing a single batch estima-
tion by means of the classical Frisch scheme. The main
advantage of this new method is the ability of shrinking
the volume of the solutions set in the parameters space
without introducing further assumptions. This volume can
be considered indeed as a performance index of the esti-
mation scheme. In the classical batch estimation scheme
the volume of the simplex is proportional to the amount of
noise affecting the system. If there is no noise, the simplex
collapses to one point, i.e. the true parameters vector.

3. PARTICLE-BASED RECURSIVE METHOD

After the first m measurements, let us keep observing the
linear system described by (1). At time instant tk the state
of the observed system is

x(tk) = (x1(tk) x2(tk) · · · xn(tk)) (12)

The observation matrix at the time instant tk is updated
as

X(tk) =


x(tk−m)

x(tk−m+1)
...

x(tk)

 ∈ IRm×n (13)

This update rule relies on the collection of m successive
observations of the state that are stacked in a matrix. Note
that any observation sample is used in one observation
matrix only, maximizing the amount of new information
contained in it. Therefore, a new estimation can be per-
formed with a frequency m times slower than the one of
state observation since m new samples are needed to build
a new observation matrix. The sample covariance matrix
at time tk is:

Σ(tk) =
X(tk)TX(tk)

m
(14)

According to Theorem 2, if MaxcorF (Σ(tk)) = 1, the
solutions of Σ(tk)A = 0 lie in the simplex whose vertices
Ai(tk) ∈ IRn−1 are defined by the n OLS solutions in
which one entry is normalized to 1 (or −1):

Ai(tk) : span(Ai(tk)) = null(Σ(tk)− Σ̃i(tk)) (15)

where Σ̃i(tk) = diag(0, · · · , 0, σ2
i (tk), 0, · · · , 0) (16)

and σ̃2
i (tk) =

det(Σ(tk))

det(Σi(tk))
(17)

being Σi(tk) the matrix obtained by deleting the i-th row
and the i-th column of Σ(tk).
Without any loss of generality, let us suppose to normalize
the last coefficient αn to 1. Therefore, under the hypothesis

of the Frisch scheme and if MaxcorF (Σ(tk)) = 1 the
solution of the identification problem belongs the simplex
S(tk) ⊂ IRn−1 whose vertices are defined as in (15) for
any value of k.
Intuitively, if several simplices are computed at different
iterations, it seems reasonable to seek the parameters value
inside the intersection of all the simplices.
Although the Frisch scheme allows a simple derivation of
the vertices of the simplices of solutions in the parameters
space, the computation of their intersection from the
knowledge of the vertices is not trivial. However, it is
rather easy to check if a point of the parameters space
belongs to a simplex, thanks to its convexity.
The Particle-based method consists in creating a set of
static points in a region of the parameters space, called
particles, each of which will be considered as a possible
solution of the estimation problem. At each iteration, a
new simplex is computed and the particles not belonging
to the intersection of this simplex with the previous one are
discarded. It turns out that this approach leads to a final
solution space which is smaller with respect to the simplex
that would merge when a single batch identification is
performed with all the data. The working principle of the
method is highlighted by the results shown in Sec. 4. In
the following the procedure is described in detail.

3.1 Initialization of the Procedure

Let us define X(t0) as

X(t0) =


x(t0)
x(t1)

...
x(tm)

 (18)

If we calculate the corresponding sample covariance matrix

Σ(t0) = X(t0)
T X(t0)
m , the initial simplex S(t0) is then

uniquely defined by its vertices which are computed as in
(15). Being l(t0) the initial number of particles, the region
of the parameter space bounded by the initial simplex is
filled uniformly with the l(t0) particles pj ∈ IRn−1, with
the procedure described in Appendix A.
The initial particle set is defined as

P(t0) := {pj : j = 1, 2, . . . , l(t0)} (19)

3.2 Updating Rule of the Solutions Set

Being S(tk) the simplex corresponding to Σ(tk) and P(tk),
l(tk) the particles set and the number of particles at
the k-th time instant, in each iteration the algorithm
is developed according to the pseudo-code reported in
Algorithm 1.
S(tk) is initially derived from Σ(tk) by means of (15).
Then the updated particle set P(tk) is assembled with the
elements of P(tk−1) lying inside S(tk). Thus, P(tk) has
the following properties:

P(tk) = {pj : pj ∈ S(th) ∀h = 0, 1, . . . , k} (20)

=

{
pj : pj ∈

k⋂
h=0

S(th)

}
(21)

From this simple idea it is possible to derive interesting
consequences. Indeed, it represents a different way to use



Algorithm 1: PRF psudo-code

Data: P(tk−1), l(tk), Σ(tk)
Result: P(tk)
Compute S(tk);
j = 1;
while j ≤ l(tk) do

if pj ∈ S(tk) then
pj ∈ P(tk);

else
discard pj

end
j = j + 1

end

a set of data, in the contest of the Frisch scheme, as an
alternative to performing a unique batch identification.
The advantages of this approach, with respect to the
standard case, are analyzed in the next section, also on
the basis of the choice m, which represents the length of
the partial data set used for a single identification step.
Furthermore, thanks to its fast convergence time, this new
scheme turns out to be suitable for online identification.

4. SIMULATION RESULTS AND DISCUSSION

4.1 Case of Study and Simulation Setup

To study the effectiveness of the proposed procedure the
following linear model has been analyzed.

α1x1 + α2x2 + α3x3 + α4x4 = 0 (22)

where

α1 = −1.5 α2 = 1.2 α3 = 2 α4 = 1 (23)

A Monte Carlo Simulation of 100 runs has been performed
in which x1, x2 and x3 have been generated as three
independent sequences of zero mean random numbers with
unitary variance, while x4 has been obtained as

x4 = −(α1x1 + α2x2 + α3x3) (24)

Due to the value of the variances of x1, x2, x3 and
the coefficients αi (i = 1, . . . , 4) x4 presents a standard
deviation of about 2.77. Independent zero mean additive
Gaussian noises has been successively added to all the
variables, with variances σ̃2

1 , σ̃2
2 , σ̃2

3 and σ̃2
4 . Therefore, the

state of the system at any instant tk can be described as
follows:

x(tk) = (x1(tk) x2(tk) x3(tk) x4(tk)) (25)

and the observation matrix has been built according to
(13). Let mtot be the number of samples in the dataset.
The total number of PRF iterations is N = (mtot/m) −
1 (excluding the initialization). The parameter mtot has
been set to be 107 and the initial number of particles 106.
The initialization of X has been done using the first m
samples. At each iteration the vertices of the simplex of
solutions have been computed as described in Section 3
normalizing to 1 the last entry of each OLS solution. For
comparison, the total simplex Stot has been computed
with the whole dataset, i.e the simplex obtained with
the classical Frisch estimation scheme using all the mtot

observations of the state. In order to evaluate the efficiency
of the proposed scheme the following two performance
indexes are defined:

• The relative mean error of the particles erm(tk),
which is computed at each iteration as:

erm(tk) =
1

l(tk)‖Â‖

l(tk)∑
j=1

‖pj(tk)− Â‖ (26)

where Â is the vector containing true values of the
parameters corresponding to the first three variables

Â = (α1 α2 α3)
T

= (−1.5 1.2 2)
T

(27)

• The volume Vsol of the solution space, namely, the
volume of the convex polytope of the parameters
space delimiting the particles 2 .

The procedure was initially tested with m = 2000, σ̃2
1 =

σ̃2
2 = σ̃2

3 = 0.16 and σ̃2
4 = 1.23. In Fig. 1 the convex hull
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Fig. 1. Comparison between the total simplex defined by the vertices
Ai computed as in (15) with the whole data set and the
convex hull enclosing the particles calculated for m = 2000,
σ̃2
1 = σ̃2

2 = σ̃2
3 = 0.16 and σ̃2

4 = 1.23

enclosing the particles remained at the end of the PRF
identification is compared with the total simplex Stot.
The volume difference of the two solution spaces shows
the improvement in the estimation precision given by the
PRF. The convergence of the PRF can be observed in Fig.
2 where the time evolution of the relative mean error of the
particles is presented. It can be noticed that erm rapidly
decays with respect to the number of iterations reaching a
nonzero constant value.
The volume Vsol of the solution space also decreases
rapidly as it can be ascertained in Fig. 3. In this figure the
time evolution of Vsol is compared with the one of Vk, the
volume of the simplices obtained at different iterations and
with the volume of the total simplex Vtot Results show that
Vsol is halved after only ten iterations and in the worst case
it becomes smaller than Vtot after three iterations. From
the outcome of the simulations can be noticed that, among
all the Monte Carlo iterations, Vtot changed of about 0.01%
of its value 3 , remarking the robustness of the standard
Frisch scheme identification. It also turns out that Vtot
corresponds always to the average of the volumes of the
simplices obtained at different iterations.

2 The geometrical properties of convex polytopes and useful meth-
ods to compute their volume can be found in (Henk et al., 2004)
3 For this reason, in Fig. 3, only the average among the Monte Carlo
runs is represented



Fig. 2. Time evolution of relative mean error erm for m = 2000,
σ̃2
1 = σ̃2

2 = σ̃2
3 = 0.16 and σ̃2

4 = 1.23. The solid line is
the average of the values obtained in different Monte Carlo
runs while the colored area (erm,b) is enclosed by the absolute
minimum and maximum values of erm in the Monte Carlo runs

Fig. 3. Time evolution of the volume of the convex hull enclosing
the particles Vsol compared with the volume of the simplices
obtained at each iteration Vk and the volume of the total
simplex Vtot form = 2000, σ̃2

1 = σ̃2
2 = σ̃2

3 = 0.16 and σ̃2
4 = 1.23.

The two solid lines are the average of Vsol and Vk obtained in
different Monte Carlo runs, the dashed black line the average
of Vtot while the colored areas (Vk,b and Vsol,b) are enclosed by
the absolute minimum and maximum values of Vsol and Vk in
the Monte Carlo runs

4.2 Overall Performance Analysis

Several estimation tests have been performed assigning
different values to the noise variances and to the length of
the observation matrix. This allows to underline how the
mutual choice of these variables affects the PRF estima-
tion, showing up some important properties of this scheme.
Therefore, different simulation have been performed in
which the noise variances have been chosen as σ̃2

i = (δ·σ̂i)2,
for i = 1, 2, 3, 4 being σ̂i the standard deviation of the
variable xi. The coefficient δ has been valued between 0.1
and 0.75 with steps of 0.05. In addition, the estimation
procedure has been tested with multiple values ofm chosen
between 50 and 10000.
The results of the simulations tests show that the resid-

Fig. 4. As function of δ and m, respectively the ratio between
noise and signal standard deviations and the length of the
observation matrix, two quantities are represented. On the left,
the residual relative mean error of the particles errm. On the
right, the ratio Vrr between the volume enclosing the particles
set at the end of the PRF identification (Vsol) and the volume
of the total simplex (Vtot)

ual 4 relative mean error of the particles, errm = erm(tN )
and the residual relative volume of the solution space
Vrr = Vsol(tN )/Vtot strongly depend on the mutual values
of δ and m, i.e., errm = errm(m, δ), Vrr = Vrr(m, δ).
In Fig. 4 errm and Vrr are represented as function of δ
and m while in Fig. 5 they are shown as function of the
observation matrix length m for different values of δ.

Residual Relative Mean Error

• Fig. 4 shows how errm increases linearly with δ,
independently from m.

• Fig. 5 shows how errm reaches exponentially with m
a constant ξ(δ) which is the relative mean error of
the initial particles, having initialized the PRF with
all the mtot samples.

• If l(t0) is sufficiently large this value is very close to
the relative mean error of the total simplex erm,tot,
hence:

ξ(δ) ≈ erm,tot (28)

where

erm,tot =
1

Vtot‖Â‖

∫
Stot

‖p− Â‖dp (29)

• If we suppose mtot arbitrarily big, namely mtot →∞,
it yields

errm(m, δ) ≈ ξ(δ)(1− e−m/λ) ≈ erm,tot(1− e−m/λ)

• In our experimental case, the value of λ turns out to
be approximatively 2000, independently from δ.

Residual Relative Volume

• Results shown in Fig. 5 exhibits that the PRF leads
always to a solutions set whose volume Vsol is lower
than the one obtained through a single identification
with the whole data Vtot since Vrr is always smaller
than one. Like errm, Vrr shows an exponential trend

4 The term residual refers to the value at the last PRF iteration
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Fig. 5. For different values of δ (the ratio between noise and signal
standard deviations), two significant data are here reported as
function of the observation matrix length m (in log scale). With
solid blue lines, the residual relative mean error of the particles
errm. With green lines the ratio Vrr between the volume
enclosing the particles set at the end of the PRF identification
(Vsol) and the volume of the total simplex (Vtot)

with m and reaches a value close to 1 when m
approaches mtot.
• On the other hand, the growth rate of Vrr depends

on δ. The dependency on δ is also exponential as it
can be appreciated in Fig. 4.
• If we suppose mtot arbitrarily big, we would have:

Vrr(m, δ) ≈ 1− e−(λ1m+λ2δ)

After this analysis, it comes out that the performances
of the PRF scheme strongly depend on two variables: the
noise affecting the system and the number of subsets in
which a given dataset is divided 5 . However, as system
designers, we only have control on this latter variable since
we cannot change the system noise rate.
Experimental results also shown, independently on the
system noise, the optimal design of the identification
algorithm is achieved by dividing the dataset in small
partial subsets. In fact, the performance of the PRF
degrades exponentially with m.
The results show the improvement of the performance of
the PRF compared to a single batch approach for any value
of noise variance and length of the observation matrix.
Therefore, whenever a sufficiently large set of data is
available it is always more convenient to perform the PRF
scheme rather than use the whole data set for a single

5 i.e., the number of iterations performed

estimation.
However, in certain conditions, the PRF scheme may
become unstable due to both numerical and statistical
issues. In fact, although small values of m and δ should
improve the overall performance of the PRF scheme, too
small values may lead to failures of the procedure.
A robustness analysis follows in the next part.

4.3 Robustness Analysis of the PRF identification

50 2000 4000 6000 8000 10000
m

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.30.0 0.6 0.9 1.0

Fig. 6. Robustness map of the PRF scheme as function of m and
δ. The blue area represents the unfeasible points where the
algorithm failed in at least one Monte Carlo run. The gray-scale
plot represents the probability of having the true parameters
vector lying inside the convex hull enclosing the “survived”
particles for different Monte Carlo runs

Throughout the simulations the feasibility of the PRF
estimates has been constantly checked. Firstly, at each
iteration the number of survived particles l(tk) has been
monitored: if it dropped below one thousandth of the ini-
tial number the estimation has been considered unreliable.
In fact excessive drop of particles might be symptom of ill
conditioned estimates because a too small solution space
should not be achieved considering the amount of noise
affecting the system. Consequently, the simulation was
aborted and the corresponding couple δ−m was marked as
failure (the blue area). Then, at the end of each estimation
it has been checked whether the true parameters was
lying inside the PRF solutions space or not. If the true
parameters vector was inside the hull the value of 1 has
been assigned to the corresponding couple δ − m while,
if it was outside, the value has been set to 0. Finally, the
results of different Monte Carlo runs has been averaged.
This data has been then used to build a map of to the
robustness of the PRF procedure as function of δ and m,
as in Fig. 6. When m is very small (i.e. less than 300)
the PRF scheme always fails for any amount of noise. In
fact, if m is too small, the observation matrix (i.e. the
regressor) is not representative of the underlying system,
leading to unreliable estimates. Furthermore, when also
δ is small, this effect is accentuated by numerical issues
(e.g. null space extraction from bad conditioned matrices,
check of particles inclusion inside very narrow simplices).
Therefore, the estimates result to be unreliable even for
higher values of m. Note that this latter issue might occur
also in the standard version of the Frisch scheme.
In order to find the optimal trade-off between performance



and reliability, m has to be chosen based on some rough
estimates of δ. In addition, if the system noise in small,
the above described numerical issues can be overcome by
adding more independent additive noise in the system.
This would stabilize the estimations without violating the
assumptions of the Frisch scheme.

5. CONCLUSION

In this work a novel recursive identification procedure
(PRF) based on the Algebraic Frisch Scheme has been
presented.
The main difference with respect to the standard approach
consists in using different subsets of data to perform sev-
eral identifications of the same process instead of perform-
ing a batch identification step.
Simulations have been conducted to prove the effective-
ness of the proposed method. Results shown the increased
reliability of the developed methodology with respect to
a single identification. Furthermore, this can be achieved
without introducing additional assumptions on data.
A robustness and sensitivity analysis of the algorithm,
with respect to the parameters used to implement it, has
been performed through Monte Carlo simulations.
Future works will extend the proposed method to time
varying systems assigning dynamic features to the parti-
cles, and will apply the developed algorithm in a robust
control framework.
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Appendix A. INITIALIZATION OF THE PARTICLES

Given a matrix M, Mi,j denotes the element of M
corresponding to the i-th row and the j-th column Let
S(t0) be the initial simplex. It is possible to define a matrix

S ∈ IR(n−1)×n whose columns are the vertices Aj(t0) of
S(t0). Then, let B be computed as

B =


min
j
{S1,j} max

j
{S1,j}

min
j
{S2,j} max

j
{S2,j}

...
...

min
j
{S(n−1),j} max

j
{S(n−1),j}

 (A.1)

A maximum number li of initial particles is chosen such
that li = an−1, a ∈ N. It is then possible to define a matrix

R ∈ IR(n−1)×a whose elements Ri,j are as follow:

Ri,j =
a− j
a− 1

Bi,1 +
j − 1

a− 1
Bi,2 (A.2)

for i = 1, . . . , n− 1, j = 1, . . . , a.
The generation of the particles can be achieved by employ-
ing the algorithm shown in the pseudo-code Algorithm 2.
To carry out the particles set initialization it is needed an

Algorithm 2: Particles set initialization pseudo-code

Data: R, S(t0)
Result: P(t0)
P(t0) = {};
for c1 ← 1 to a do

for c2 ← 1 to a do
...
for cn−1 ← 1 to a do

p = (R1,c1 ,R2,c2 , . . . ,Rn−1,cn−1)
if p ∈ S(t0) then

add p to P(t0)
end

end
...

end
end

algorithm able to determine if a point belongs to a convex
hull (i.e., a simplex), see e.g., (Boyd and Vandenberghe,
2004).
This initialization procedure leads to a number of particles
l(t0) that constitute P(t0) which is less than li, l(t0) < li.
The diminution of l(t0) with respect to li is only dependent
on the shape of the initial simplex S(t0), e.g., it may
greatly decrease if some edges of the simplex are narrowed.


