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ABSTRACT

This paper presents a dense method of real-time registration
of RGB-D image pair. So far, we have proposed the “see-
through system”, in which multiple images acquired from
RGB-D sensors are integrated to present images that is use-
ful for confirming the shape or the positions of objects behind
obstacles. However, errors of positional relation of sensors re-
sult in see-through images in which some objects are doubled
or appear at incorrect positions. It is difficult to align the im-
ages because they are captured from distant viewpoints and
there are few shared field of view. In the proposed method,
positional relation of two RGB-D sensors is corrected using a
new IRLS framework, fast and robust minimization strategy.

Index Terms— diminished reality, RGB-D sensor, see-
through, registration, remote operation

1. INTRODUCTION

For remote operation of robots in dangerous situations such
as disaster sites, providing robot operators with appropriate
visual information is important [1]. Since conducting tasks
while comparing multiple images requires highly skilled tech-
nique [2], it is effective to integrate multiple images into one
image which helps operators to recognize the environment.
So far, we have proposed a real-time see-through system [3],
in which images from RGB-D sensors mounted on a robot
are integrated to produce see-through images, as illustrated in
Fig. 1. In [3], RGB-D sensors are mounted in front of the
robot and on the arm, and the sensor can move along with the
arm to provide appropriate field of view.

However, there is a problem of “position gap”, in which
some objects are doubled or appear at incorrect positions in
see-through images, because the information of the positional
relation between sensors has small errors. If the gap exists, it
is difficult to recognize the positions and shapes of objects in
the image. This is a general problem to be solved, for not only
this system but also other see-through applications [4–9].

In this paper, we propose a real-time registration method
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Fig. 1: The illustration of real-time see-through system for
remote control robot using two RGB-D sensors [3]. How-
ever, there is a problem of small gap, caused by errors of po-
sitional relation of sensors, which leads to doubled objects in
see-through images.

to correct positional relation of two RGB-D sensors to mini-
mize the gap in see-through images.

2. RELATED RESEARCH

Registration is related to visual odometry [10] or visual
SLAM [11]. These techniques estimate sensor trajectory,
that is, rotation and translation between time t and t+1 using
two-dimensional images or three-dimensional data. As far as
three-dimensional data are concerned, visual odometry and
image registration are almost the same techniques, because
appropriate registration of two set of data can be performed
by applying appropriate rotation and translation.



According to [12], visual odometry can be largely catego-
rized into two branches. One is feature based method [13],
which extracts features from images and matches them. Al-
though the calculation cost of feature based methods is gener-
ally low, they can fail when appropriate features are not found
or feature matching goes wrong. Therefore, we employ the
other one, dense method, which directly matches values of
each pixel in the images [10, 11, 14, 15].

However, there are two issues we have to solve when it is
applied to see-through system for remote control robot:

1. Unlike visual odometry, see-through images are created
by a pair of images captured from distant viewpoints.
Thus the pair of images may have fewer shared field of
view (the yellow part in the image 1 and 2 in Fig. 1, for
example). It is difficult to align such images, because
pixels out of shared field of view are supposed to have
different colors and we have no information of where
shared field of view is in unknown environment.

2. It is necessary to reduce calculation cost. Although
dense method is robuster than feature based method,
calculation cost is higher. For operation of remote con-
trol robot, real-time image presentation is required.

3. PROPOSED METHOD

The main concept of the proposed method is illustrated in
Fig. 2. In this paper, we define the Sensor 1 and 2 as the
RGB-D sensors, the Input 1 and 2 as images captured from
respective sensors, and the Image 1 and 2 as the Input 1 and
2 transformed into the same coordinate system. The pose
of the Sensor 2 (6 degree of freedom) is corrected and the
appearance of the Image 2 is changed so that the difference
between the Image 1 and 2 is minimized. If we define a six-
dimensional vector ξ as the correction amount, the image reg-
istration is reduced to calculation of ξopt, which minimizes an
error fucntion E(ξ):

ξopt = arg min
ξ

E(ξ). (1)

In order to solve the two issues listed in Chapter 2, we
have two new ideas:

1. Error function is minimized using a new Iteratively
Reweighted Least Squares (IRLS) framework to en-
hance robustness against non-shared field of view.

2. Pixels of less importance are efficiently excluded using
the gradient of images to reduce calculation cost.

3.1. See-through Images and Correction Amount

The method to create see-through images is explained in de-
tail in [3]. The positional relation between the Sensor 1 and 2
are calibrated in advance. For each frame, three-dimensional

Fig. 2: The main concept of the image registration based on
dense method. If we define a six-dimensional vector ξ as the
correction amount, the image registration is reduced to mini-
mization of an error function E(ξ).

point clouds captured from the Sensor 1 and 2 are coordinate-
transformed to the coordinate system of the viewpoint of the
output image, and then projected on two-dimensional images,
creating the Image 1 and 2. The see-through image is created
by alpha blending of the Image 1 and 2.

The focus of this research is errors of coordinate transfor-
mation, that is, rotation and translation. The errors are caused
by motion of sensors. Rotation and translation can be rep-
resented as a six-dimensional vector (rx, ry, rz, tx, ty, tz)T,
and correction amount of this vector can be represented as
ξ = (∆rx,∆ry,∆rz,∆tx,∆ty,∆tz)

T. Image registration is
reduced to calculation of the appropriate correction amount ξ.

3.2. Derivation of Error Function

We derive the error function E(ξ) on the assumption that cor-
responding pixels have the same values in the pair of images
if they are correctly aligned. This assumption works as long
as there are no strong specular reflection or semitransparent
objects.

If the Image 1 and 2 have n pixels each, E(ξ) is repre-
sented using pixel values of i-th pixel of the Image 1 and
2, for i = 1, ..., n. Let values of the i-th pixel (ui, vi) in
the Image 1 and 2 be I1(ui, vi) and I2(ui, vi), respectively.
Pixel values consist of three color components, R, G and B,
so I1(ui, vi) = (R1(ui, vi), G1(ui, vi), B1(ui, vi))

T, and the
same is true of I2(ui, vi). After correction by ξ, the pixel
(ui, vi) in the Image 2 goes to (u′i(ξ), v′i(ξ)) and the Image
2 changes to I ′2(u′i(ξ), v′i(ξ)). Considering color consistency
of the Image 2, illustrated as the curved arrow in Fig. 2, we
define the residual of i-th pixel as follows:

ri(ξ) = I1(u′i(ξ), v′i(ξ))− I ′2(u′i(ξ), v′i(ξ))

= I1(u′i(ξ), v′i(ξ))− I2(ui, vi).
(2)



Using the residuals, we define the error function E(ξ) as
the sum of weighted quadratic form:

E(ξ) =
∑
i∈S

wiri(ξ)TΣ−1r ri(ξ). (3)

Σr is a 3 × 3 matrix equivalent to a variance-covariance
matrix of ri(ξ), and wi is the weight of i-th pixel. The setting
method of Σr and wi is explained in Section 3.3. In order to
exclude less important pixels and to reduce calculation cost,
we define a set S ⊆ {1, ..., n} as the set of index which corre-
sponds to pixels used for calculation of E(ξ). Indices i whose
magnitudes of gradients (∂I1(ui,vi)

∂u , ∂I1(ui,vi)
∂v ) are large are

included in S, which are supposed to be characteristic region
in the image. In the proposed method, the norm of gradient is
evaluated at all pixels and the pixels whose norm of gradient
are larger than the average are included in S.

Minimization of (3) is a non-linear least squares problem,
which takes a lot of time to solve. Therefore, (3) is linearized
by the first order Taylor approximation on the assumption that
the correction amount ξ is small, and minimization of (3) is
reduced to linear least squares problem:

E(ξ) '
∑

i∈S wi(ri(0) + Jiξ)TΣ−1r (ri(0) + Jiξ)
= (R0 + Jξ)TW (R0 + Jξ).

(4)
Ji is a 3× 6 Jacobian matrix of the i-th residual, and R0

and J are stacked matrices of all ri(0) and Ji for i ∈ S . W
is a sparse matrix which consists of diagonally placed wiΣ

−1
r

and 0 for other elements.

3.3. Minimization of Error Function Robust against Out-
liers

Minimization of the error function is reduced to the linear
least squares problem in section 3.2. It is easy to get the ana-
lytic solution of minimization of (4):

ξ = (JTWJ)−1(−JTWR0). (5)

However, linear least squares is open to the effect of out-
liers. If the Image 1 and 2 have few shared field of view,
there are many outliers in residuals and registration may
fail. Therefore, we employ the Iteratively Reweighted Least
Squares (IRLS) method [16], which is robust against outliers
and requires small calculation cost. IRLS repeatedly adjusts
the weight of each term and solves the least squares, so that
the effect of outliers becomes smaller and smaller, without
detecting outliers explicitly. Since there are many outliers in
the situation of our research, where a pair of images is cap-
tured from distant viewpoints and there may be few shared
field of view, we propose a new framework of IRLS which is
robuster against outliers than the original one.

The proposed flow of the process is illustrated in Fig. 3.
First, all weights are set to 1 and the initial solution of ξ is

Fig. 3: The proposed IRLS flow. First, all weights are set to 1
and the initial solution of ξ is calculated. The weights are then
updated using the resulting ri(ξ) and the weighted variance-
covariance matrix Σr. Minimization of the error function and
updating weights are repeated until convergence.

calculated. The weights are then updated by a weight func-
tion, using the resulting ri(ξ) and the “weighted” variance-
covariance matrix Σr. Minimization of the error function and
updating weights are repeated until convergence.

We employ the Tukey’s biweight function [17], which can
completely eliminate the effect of obvious outliers. The well-
known Tukey’s biweight function consists of a scalar residual
ri, standard deviation of ri and a parameter c which adjusts
sensitivity to outliers. However, ri(ξ) is a vector in the pro-
posed method, so we expand it and the weight of the i-th term
wi is calculated as follows:

wi =

{
0 (ri(ξ)

TΣ−1
r ri(ξ) > c2)

(1− ri(ξ)
TΣ−1

r ri(ξ)

c2
)2 (ri(ξ)

TΣ−1
r ri(ξ) ≤ c2)

.

(6)
Σr is a 3 × 3 matrix equivalent to a variance-covariance

matrix of ri(ξ), already appeared in (3). In order to remove
the effect of outliers of ri(ξ), we set Σr as a “weighted”
variance-covariance matrix, calculated using weights wi and
the weighted average of ri(ξ), r.

r =

∑
i∈S wiri(ξ)∑

i∈S wi
, (7)

Σr =

∑
i∈S wi(ri(ξ)− r)(ri(ξ)− r)T∑

i∈S wi
. (8)

The minimization of (3) by (5), updating Σr by (7) and
(8), and updating weights by (6) are repeated until conver-
gence. These variables converge in few iterations, so the iter-
ations do not require additional heavy calculation. By using



(a) Input 1. (b) Input 2. (c) Before registration. (d) After registration.

Fig. 4: The experimental result. (a) Input image from the Sensor 1. (b) Input image from the Sensor 2. (c) See through image
without registration. Some objects are doubled or appear at incorrect positions. (d) See through image after the registration of
the proposed method. The errors of the positional relation of the sensors are corrected and it is easier to confirm the shape or
the positions of objects.

the weighted variance-covariance matrix Σr, effect of outliers
on Σr is diminished and the weights wi of outliers are further
diminished in (6), which accelerates convergence.

As the linearization is only valid for small ξ, we build an
image pyramid where the image resolution is halved at each
level, and the solution at lower resolution is used as an initial-
ization for the next level. In this way, even large rotation and
translation can be handled.

4. EXPERIMENTS AND EVALUATION

4.1. Environmental Settings

We calibrated the positional relation of two RGB-D sensors
(ASUS: Xtion Pro Live) first, then moved the Sensor 2 to
confirm whether registration of images works even if the po-
sitional relation of the sensors has errors. In the experimental
environment, there were an obstacle in front of the Sensor 1
and three cubes with a side length of 85 mm which were the
objects to be observed. Examples of input images captured
from the Sensor 1 and 2 are shown in Fig. 4 (a) and Fig. 4 (b).
In Fig. 4 (a) and Fig. 4 (b), two of three objects appear each,
while it is impossible to see all three objects in a single image.

The parameter of the Tukey’s biweight function was set
to c = 5, and the number of iteration of IRLS was fixed to 3.
These parameters were determined heuristically.

4.2. Registration Results

The see-through image created using Fig. 4 (a) and Fig. 4 (b)
without registration is shown in Fig. 4 (c). Although all three
objects can be seen in Fig. 4 (c), some objects are doubled
or appear at incorrect positions, because of the errors of the
positional relation of the sensors.

An example of the result after registration is shown in
Fig. 4 (d). After the registration of the proposed method, the
errors of the positional relation of the sensors were corrected
and it was easier to confirm the positions and shapes of ob-
jects.

Table 1: Results of the quantitative evaluation.

Response time 0.5 s
Alignment Precision 5 pixel

Max. of handleable gap 40 pixel
Frame rate 19.4 fps

We evaluated the performance of the proposed method
quantitatively, as shown in Table 1. It took about 0.5 s, or
10 frames, for the registration to converge and the position
gap was reduced to 5 pixel. It is equivalent to 30 mm at a
distance of 1,000 mm from the sensor. The proposed method
was able to handle position gap of up to 40 pixel. Using a
2.70 GHz Intel Core i7-6820HQ CPU, the frame rate of the
output image was 19.4 fps on average, with a standard de-
viation of 2.0 fps. Since it is known that the duration of a
human moment amounts to 1/18 of a second and that humans
cannot perceive what happens within 1/18 of a second [18],
this processing speed is supposed to be acceptable for remote
operation of robots; the system worked in real-time.

5. CONCLUSIONS

We proposed a dense method to correct positional relation of
two RGB-D sensors (6 degree of freedom) to minimize the
gap in see-through images. In order to reduce calculation cost,
pixels of less importance are efficiently excluded. In order to
precisely align images captured from distant viewpoints, the
error function is minimized by new IRLS framework which
is robust against outliers. The experiments on two RGB-D
sensors demonstrated the registration ability in real-time.

It is expected that we can construct a see-though system
without external information like joint angle information of a
robot arm. This method has wide applications for integration
of images captured from multiple viewpoints, especially un-
der a situation where correct positional relation of sensors is
difficult to get: multiple mobile robot systems for example.
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