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Abstract— In this study, we propose the advanced adaptive
cruise control for assessing the collision risk with surrounding
vehicles and control the ego vehicle as a way to improve
driving safety. Autonomous driving and advanced driver as-
sistance systems (ADAS) have attracted attention as solutions
to accident prevention. The ability to anticipate a situation
and automatically control a maneuver to avoid a collision
is expected to become a reality in the near future. Our
research group has focused on the requirements of such ability,
particularly lane changing, which is the main factor of traffic
accidents. The advanced adaptive cruise control adjusts its
distance from surrounding vehicles to minimize a collision risk
in advance. The proposed method estimates the intentions of
the surrounding traffic participants and predicts their future
actions. Based on such prediction, a collision risk assessment
is performed. It was demonstrated that the proposed control
method can dramatically improve driving safety over human
drivers.

I. INTRODUCTION

According to a previous survey, it has been reported that
human error cause almost 90 % of all car accidents [1].
Therefore, autonomous driving and advanced driver assis-
tance systems (ADAS) have attracted attention as solutions
to improving driving safety. These systems have already been
implemented in real vehicles, and are being used to analyze
dynamic scenes and issue warning alarms to a driver when
a dangerous situation is predicted. Furthermore, in the near
future it will become possible to anticipate certain situations
and automatically control maneuvers to avoid a collision.
It was reported that lane changes are the main factor in
car crashes [2]. In the real world, there are drivers with
an aggressive driving style, who may perform a risky lane
change even when safety is not ensured. To prevent this type
of dangerous situation, the prediction of future actions of
the surrounding traffic participants is strongly required, as
shown in Fig. 1. Moreover, automated maneuvers conducted
to avoid collisions based on a prediction can dramatically
improve driving safety.
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Fig. 1. Prediction of future action: Predicting future actions of the
surrounding traffic participants for driving safety is strongly required. In
the figure, LC indicates lane changing, and LK denotes lane keeping. The
prediction of lane-changing actions and maintaining the distance from the
vehicle in advance are expected to be achieved.

There have been many previous studies on trajectory
prediction and collision risk assessments. Wolf and Burdick
proposed a control method for autonomous driving based on
a potential field method [3]. However, this method needs to
be known in order to calculate the potential energy. As the
result, it can only be applied to a self-trajectory. Therefore,
their method is not suitable for the trajectory prediction of the
surrounding vehicles. Houenou et al. proposed a method to
integrate a motion model and a maneuver recognition model
for trajectory prediction [4]. Their motion model predicts a
trajectory with assuming constant yaw rate and acceleration.
The maneuver recognition model determines whether the
subject keeps or changes a lane by the comparison of the
instantaneous path and the shape of the road. However,
this method does not take into account adjacent vehicles
when predicting a trajectory. Furthermore, the discussion
only focused on the trajectory prediction, and a way to
react to the behaviors of the surrounding vehicles to improve
driving safety was not proposed.

In a collision risk assessment, the time-to-collision (TTC)
and KdB, which is a perceptual risk index, are generally used
as an index to evaluate the possibility of crashing, wherein
the vehicle of concern is following the preceding vehicle [5],
[6]. These indices are calculated using the relative veloc-
ity and the distance between the following and preceding
vehicles. However, they become less efficient for future
behaviors. Laugier et al. proposed a method for a collision
risk estimation [7], and is able to evaluate the future risk of
surrounding vehicles by the trajectory prediction. However,
avoidance of the behaviors of other traffic participants has
not been discussed.



Fig. 2. Problem definition: The scene is modified to obtain an infinite and straight highway, which has only one side. The ego vehicle predicts the position
of the target vehicle for a time horizon of 2 s, and the assessment space of collision risk is then defined between the predicted position and the following
vehicle. The ego vehicle adjusts the position in advance to minimize the collision risk with respect to both vehicles before the target vehicle crosses the
lane marking.

To solve these issues, we propose a novel method to
assess a future collision risk and avoid a collision with a
surrounding vehicle. Adaptive cruise control (ACC), which
controls the velocity and maintains a safe distance from the
preceding vehicle, is already implemented in real vehicles;
however, it cannot handle future collision risk in its current
stage. The proposed method predicts the trajectories of the
surrounding vehicles, particularly those cutting the front
space of the ego vehicle, and evaluates the collision risk for
a time horizon of a few seconds. Moreover, it appropriately
adjusts the distance to both the lane-changing vehicle and the
following vehicle of the ego vehicle based on a risk indicator.
The proposed method uses the risk index extracted by the
dynamic characteristic potential field method, which changes
the distribution depending on the relative distance and the
relative velocity [8]. This index can be used to evaluate
a collision risk without restricting specific conditions, as
observed in TTC or KdB. The proposed method adjusts the
velocity of the ego vehicle to decrease the risk index while
predicting the trajectories of the surrounding vehicles.

The contribution of the present research is as follows.
Previous studies have certain limitations, as described in
the previous paragraph. The proposed method is able to
anticipate the future risk and control the vehicle to avoid
a collision with the surrounding vehicles. This is a state-of-
the-art approach, and demonstrates a significant performance
as an advanced safety system.

The remainder of this paper is organized as follows.
Section II presents the problem definition and an overview
of the proposed method. Section III describes the details of
the proposed method. Section IV details the experiments and
presents the evaluation results. Finally, Section V presents
some concluding remarks and areas of future work.

II. OVERVIEW

A. Problem definition

In this study, the scene is modified to obtain a straight
and infinite highway, which has only one side, as shown
in Fig. 2. The ego vehicle, indicated using a green color,
houses measurement devices such as GPS and lidars. The
vehicle predicts a trajectory of the target vehicle (shown
in red). The proposed method focuses on a situation in
which the target cuts in the front space of the ego vehicle,
which is the main factor of an accident. The trajectory of
the target vehicle and the collision risk are estimated for a

time horizon of 2 s. The ego vehicle should consider the
risk with respect to not only the target vehicle, but also
the following vehicle. If it immediately decelerates to avoid
the cut-in vehicle, a collision with the following vehicle
would occur. Hence, the ego vehicle adjusts its position and
velocity to minimize the risk toward the two vehicles. Only
the measurable information regarding the ego vehicle is used,
and all calculations are conducted within 0.1 s.

B. Overview

To overcome the limitation of the previous studies, a novel
method based on a collision risk assessment for the ACC
is proposed. Figure 3 shows a schematic of the proposed
method, which comprises four parts: driving intention esti-
mation, trajectory prediction, collision risk assessment, and
risk minimization. Inputs of the method are the positions of
the ego and surrounding vehicles. The position of the ego
vehicle can be measured using GPS, whereas those of the
surrounding vehicles can be acquired using lidars.

First, the proposed method indicates that drivers have
four intentions, namely, lane keeping, changing, arrival, and
adjustment. Each intention is defined as a class, and an
estimation is treated as a multiclass problem using a support
vector machine (SVM). The method is based on the lateral
movement of the target vehicle. Details of this method are
provided in our previous articles [9], [10]. The output of this
part is the intention at each time step.

Second, the trajectory prediction applies the estimated
driving intention to identify the strategies that drivers may
execute while driving. In general, drivers perform different
strategies with different intentions. When drivers have inten-
tions such as keeping and adjustment, they aim at the front
of the current lane and pay more attention to the vehicle in
the same lane than the vehicles in the other lanes. On the
other hand, when drivers have intentions such as changing
and arrival, they aim at the front of the adjacent lane, and
must take into account surrounding vehicles on not only the
current lane but also the adjacent lane. As the result, drivers
must consider the surrounding vehicles according to their
driving intentions. The proposed method changes the strategy
according to the intention. Two prediction methods are used
in each direction. The prediction in the longitudinal direction
is conducted using the potential field method, whereas that in
the lateral direction uses the sinusoidal model. Details of the
trajectory prediction method are described in Section III. A.



Fig. 3. Overview of the proposed method: The proposed method comprises four parts: driving intention estimation, trajectory prediction, collision risk
assessment, and risk minimization. Inputs of the method are the positions of the ego vehicle and surrounding vehicles measured by sensors, which are
installed in the ego vehicle. The output of the proposed method is the value of control of the ACC.

Third, a collision risk assessment is conducted. As de-
scribed in Section I, the collision risk is evaluated using
the dynamic potential field method in which the distribution
is determined depending on the vehicle gap and relative
velocity. The repulsive potential energy from the surrounding
vehicle to the ego vehicle is defined as the risk index. If two
vehicles rapidly near each other, it is reflected in the large
amount of energy produced. On the other hand, when the ego
vehicle keeps a safe vehicle gap and adjusts its velocity with
respect to the surrounding vehicle, the low collision risk is
reflected in the small repulsive potential energy that occurs.
The details of this are described in Section III. B.

Finally, the proposed method determines an accelera-
tion/deceleration to minimize the collision risk. In the min-
imization, both the target and following vehicles should be
considered. Furthermore, because inconsistent or excessive
acceleration (deceleration) can cause an accident with the
following vehicle, such action is prohibited. The output of
the proposed method is the value of control for the ACC.
The details of this part are discussed in Section III. C.

III. PROPOSED METHOD

A. Trajectory prediction

The proposed method predicts a trajectory according to the
estimated driving intention of the surrounding drivers. First,
when the estimated intention is keeping or adjustment, the
goal is set to the front of the current lane. The surrounding
vehicles generate the repulsive potential energy, which causes
the vehicle of concern to maintain a safe margin from the
front and back. However, the driver does not pay attention to
the vehicles on the adjacent lane. On the other hand, when
the estimated intention is changing or arrival, the driver aims
at the front of the adjacent lane and may check the gap
with the vehicles in both lanes. The proposed method uses
a sinusoidal model to generate a lane-changing trajectory in
the lateral direction, and the potential field method to avoid
surrounding vehicles in the longitudinal direction.

Fig. 4. Sinusoidal model for lane-changing trajectory: This model generates
a lane-changing trajectory in the lateral direction.

For a prediction of lateral movement during a lane change,
the proposed method uses the sinusoidal model [11]. This
model is able to generate a lane-changing trajectory such
as a sine curve, as shown in Fig. 4, and does not require a
particular parameter. The acceleration in the lateral direction
can be derived as

alat(t) =
2πH

t2lat
sin

2π

tlat
t, (1)

where alat indicates a lateral acceleration, t is the time
from the beginning of a lane change, H is the final lat-
eral displacement, and tlat is the lane-changing duration.
The proposed method determines the value of H as the
lane width. Furthermore, tlat is calculated using the lateral
velocity at the moment when the intention is estimated as
changing. Thus, the lateral acceleration can be calculated
without applying any particular parameters.

The proposed method predicts the longitudinal movement
based on the potential field method. It defines two potential
energies and generates a trajectory from the current position
of the target vehicle to its goal while avoiding crashes. The
total potential energy at the position x is derived as

U(x) = Ug + Us, (2)

where Ug denotes the attractive potential energy from the
goal, and Us denotes the repulsive potential energy from
surrounding vehicles. First, the potential energy from the
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Fig. 5. Generated potential fields using dynamic potential model: (a) The ego vehicle drives with the same velocity as vehicle i, (b) the ego vehicle is
faster than vehicle i, and the ego vehicle is slower than the vehicle i.

goal is calculated as

Ug(x) = −ωgx, (3)

where ωg is the weight coefficient. The value of ωg de-
termines the acceleration/deceleration tendency when there
are no surrounding vehicles. A large value creates sudden
changes in velocity, and makes closes the vehicle gap be-
tween the target and preceding vehicles.

On the other hand, the repulsive potential energy from the
surrounding vehicles is calculated as

Us(x) = ωs exp
(x− xi)

2

σ2
, (4)

where ωs is the weight coefficient, σ is the standard deviation
of a vehicle gap from the surrounding vehicles, and i is the
index of the vehicles. In this paper, the vehicles are denoted
by capital letters (T :target, E:ego, and F :following). When
the proposed method calculates the repulsive potential energy
from the ego vehicle, it is assigned as i = E. The values of
ωs and σ determine how the vehicle of concern takes a gap
from vehicle i.

The trajectory prediction is performed for a time horizon
of 2 s because it is commonly recognized as the reaction
times of the driver and vehicle [12]. As a result, the output
is the sequence of positions of other traffic participants for
2 s in advance.

B. Collision risk assessment

Based on the predicted trajectories, a collision risk as-
sessment is conducted. As described in Section II, the
proposed method defines the dynamic potential energy as
the risk index. This model has no relationship with the
potential field method for trajectory prediction, as described
in Section III. A. The repulsive potential energy generated
by the vehicle i can be derived as

f(∆Vi, θi) =
1

2πI0(η(∆Vi))
exp
(
η(∆Vi) cos θi

)
, (5)

h(Gi) =
1

2πσi
exp
(
− G2

i

2σ2

)
, (6)

Ri = f(∆Vi, θi)h(Gi), (7)

where

θi =

{
π (i = T )

0 (i = F )
. (8)

Here, ∆Vi indicates the relative velocity between the ego
and vehicle i, and Gi is the vehicle gap between the two
vehicles. Equation (5) represents the von Mises distribution,
and I0(η) is a modified Bessel function of order 0. The
distribution is uniform when the parameter η is zero. If the
parameter η is large, the distribution drifts toward angle θi. In
this study, the parameter η is adjusted based on the relative
velocity ∆Vi; the drifted direction of the potential field is
then chosen. Equation (6) denotes the repulsive potential
energy, which is inversely proportional to the vehicle gap.

Figure 5 shows the conditions of the vehicles with regard
to the generated potential field based on the relative velocity.
With regard to the colors of the generated potential field,
the red and blue circles indicate high and low repulsive
potential energies, respectively. When the velocity of the ego
vehicle is equal to that of vehicle i, the potential field is
uniform depending only on the vehicle gap, as shown in
Fig. 5 (a). When the ego vehicle is faster than vehicle i,
the potential field drifts toward the ego vehicle, as shown
in Fig. 5 (b). Consequently, the ego vehicle is affected by
the large potential energy, implying that the ego vehicle
is at a high risk of colliding with the vehicle ahead. In
contrast, when the ego vehicle is slower than vehicle i, the
potential field is generated in the forward direction, as shown
in Fig. 5 (c). Even if the ego vehicle closely approaches
vehicle i, the collision risk remains low because of the
relative velocity. The low collision risk is reflected in the
small amount of repulsive potential energy. Equation (6)
expresses the repulsive potential energy, which is inversely
proportional to the vehicle gap. This equation shows that if
the ego vehicle drives close to vehicle i, it is affected by the
large amount of repulsive potential energy. However, if the
ego vehicle is farther away, the potential energy is lower.

The proposed method assesses the collision risk toward
both the target and following vehicles. Therefore, vehicle i
is the target vehicle when the collision risk with respect to
the target is assessed. On the other hand, vehicle i is the
following vehicle when the collision risk with the following
vehicle is evaluated. Finally, the collision risk at position
(x, y) can be derived as

R(x, y) =
∑

i=T,F

Ri, (9)

where T represents the target vehicle, and F denotes the
following vehicle.
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Fig. 6. Results of trajectory prediction by proposed method: (a) When the target vehicle maintains the current lane, (b) when the target changes a lane, (c)
and when the target finishes lane changing. The red rectangle depicts the predicted position at each time step, and the black line shows the ground truth.
Red indicates the target, green shows the ego vehicle, blue represents the following vehicle, and yellow indicates other vehicles that are not considered. It
was clearly shown that the proposed method accurately predicted the trajectory compared with the ground truth.

C. Risk minimization

Based on the collision risk, the ego vehicle adjusts the
vehicle gaps with respect to both the target and the following
vehicles. The proposed method finds the optimal position
between the two vehicles to minimize the collision risk.
However, it can conversely cause an accident when apply-
ing an inconsistent or excessive acceleration (deceleration)
because it surprises the surrounding drivers. Hence, the
proposed method limits the acceleration (deceleration) to
within ±0.5 m/s2. When there is no cut-in vehicle, the
ego vehicle adjusts the position between the preceding and
following vehicles in the same lane. If lane changes are
predicted, the ego vehicle maintains a certain distance from
the predicted position of the target vehicle for a time horizon
of 2 s. The position used to minimize the collision risk can
be determined as

(x∗, y∗) = argmin
x,y

R(x, y), (10)

where
xF < x < xT . (11)

In the equation, xF represents the longitudinal position
of the following vehicle, and xT indicates that of the target
vehicle. Finally, the control value is determined as the ego
vehicle arrives at the position (x∗, y∗) 2 s in advance.

IV. RESULTS

The proposed method was trained and tested using a
real traffic dataset collected from eastbound I-80 in the San
Francisco Bay Area. This dataset has been published by the
Federal Highway Administration of the United States [13].
The measurement area was approximately 500 m in length
and consisted of six freeway lanes. The data was recorded in
0.1 s increments for 15 min. Data from 5,678 vehicles were
collected. Among them, 747 lane-changing data were used
for the evaluation. A evaluation period of 5 s was defined
based on the moment at which the target vehicle crosses the
lane marking. The errors in trajectory prediction and collision
risk were calculated during this period.

First, the performance of the driving intention estimation
was evaluated. Cases in which the proposed method deter-
mined that a lane change would occur when in fact the
vehicle did not change lanes were judged a false alarm.

Otherwise, cases in which the proposed method predicted a
lane-keeping state when the vehicle performed a lane change
were judged a failure. A failure is the most dangerous case,
and thus, the lane-change detection system must achieve a
recall with 100 % accuracy. The performance was evaluated
based on the F1 score, which is defined as

F1 = 2 × precision × recall

precision + recall
. (12)

Including the precision in the F1 score allows for an
evaluation of the false-alarm rate, and the recall represents
the failure rate. The proposed method achieved 98.3 %
accuracy. Among 747 events, false alarms occurred in 26
cases, and no failures occurred, which is a higher level of
performance than that of previous methods.

Figure 6 shows the results of trajectory prediction in one
lane-changing event from the test dataset. The red rectangle
represents the predicted position of the target vehicle at
each time step, and the black line shows the ground truth.
Figure 6 (a) shows the result at a position in which the
target kept its current lane. Fig. 6 (b) shows the result
at a point in which the target conducted a lane change.
Fig. 6 (c) represents the result when the target vehicle
finished changing lanes. It was shown that the predicted
trajectory is quite consistent with the ground truth. The
error in trajectory prediction by the proposed method was
calculated during a lane change for the entire testing dataset.
The average lateral error was 0.16 m, whereas the average
longitudinal error was 1.72 m. The prediction in the lateral
direction was better than the longitudinal movement because
the displacement in the lateral direction was smaller during a
lane change. From this evaluation, it was demonstrated that
the proposed method can accurately predict the trajectories
of the surrounding vehicles.

An example of improved driving safety using the proposed
method for an entire testing dataset is illustrated in Fig. 7.
Figure 7 (a) shows the results of driving intention estimation
using the proposed method. In the figure, τj represents the
moment at which the proposed method judges that the target
vehicle will change a lane, and τc indicates the moment at
which the target vehicle crossed the lane marking. It was
shown that the proposed method appropriately estimated the
driving intentions and predicted a lane change in advance.



(a) (b)

Fig. 7. Results of the proposed method: (a) the results of driving intention estimated using the proposed method. In the figure, τj represents the moment
at which the proposed method judges that the target vehicle will change its lane, and τc is the moment at which the target vehicle crosses the lane marking,
and (b) represents a comparison of the velocity of the ego vehicle used in the example. It can be confirmed that a human driver abruptly decelerated after
the target vehicle crossed the lane marking. On the other hand, the proposed method predicted the lane change and decelerated in advance.

TABLE I
COMPARISON OF COLLISION RISK.

Human drivers Proposed method

Collision risk [J] 1.52 1.27

Figure 7 (b) compares the velocity of the ego vehicle
in the example. It can be confirmed that a human driver
abruptly decelerated after the target vehicle crossed the lane
marking. In this case, an accident did not occur; however, the
rapid deceleration could cause a collision with the following
vehicle. On the other hand, it was shown that the proposed
method predicted the lane change and decelerated in advance.
As a result, the ego vehicle suitably adjusted the velocity
without a rapid deceleration. The same evaluation for the
entire testing dataset was repeated, and the collision risk was
compared. Table I shows the results in terms of the average
of the collision risk. It was demonstrated from the table
that the proposed method decreased the collision risk and
dramatically improved the driving safety. The above results
prove the effectiveness of the proposed method.

V. CONCLUSION

In this study, we proposed advanced adaptive cruise con-
trol to assess the collision risk with the surrounding vehicles
and control the ego vehicle to improve driving safety. In
particular, the proposed method focused on a lane change in
which the surrounding vehicle cut-in on the front space of
the ego vehicle. The proposed method estimated the intention
of the target driver and predicted its trajectory. Based on the
prediction, the collision risk assessment was performed, and
the ego vehicle then adjusted its distance to minimize the
risk. It was demonstrated that the proposed cruise control
method improves the driving safety when compared with a
human driver. As future work, we plan to implement the
proposed method in a real vehicle and conduct experiments
to evaluate its performance.
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