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Abstract— Self-localization in indoor environments is a crit-
ical issue for visually impaired people. Most localization ap-
proaches use low-level features and metric information as input.
This can result in insufficient output for visually impaired
people since humans understand their surroundings from high-
level semantic cues. They need to be provided their location with
respect to the objects in their surroundings. Thus, in this work,
we develop a novel framework that uses semantic information
directly for localization, which can also be used to inform the
user about his surroundings. The developed framework directly
uses sparse semantic information such as the existence of doors,
windows, tables, etc. directly within the sensor model and
localizes the user within a 2D semantic map. It does not make
use of any distance information to each semantic landmark,
which is usually quite difficult to obtain. Nor does it require
any kind of data association - the objects need not be uniquely
identified. Hence, it can be implemented with simple sensors like
a camera, with object detection software. For our framework,
one of the most popular game engines, Unity was chosen to
create a realistic office environment, consisting of necessary
office items and an agent with a wide-angle camera representing
the user. Experimentally, we show that this semantic localization
method is an efficient way to make use of sparse semantic
information for locating a person.

I. INTRODUCTION

According to the World Health Organization (WHO), 253
million people are visually impaired, of whom 36 million
are blind1. One of the problems visually impaired people
face is self-localization. The self-localization problem can be
divided into two categories: outdoor localization and indoor
localization. Outdoor localization has been greatly achieved
by GPS. On the other hand, GPS does not work well inside
of a building. Such environments remain a problem for blind
people.

Indoor localization has been investigated and shaped by
researchers mostly for robots with the help of different
sensors. Robots generally need accuracy in metric informa-
tion with respect to metric landmarks [1]. Therefore, tra-
ditional indoor localization and mapping systems generally
use range sensors and metric maps [2]. Even though this
information is useful for robots, it is insufficient for visually
impaired people. According to [3], visually impaired and
blind people make a mental map of an environment and find
the relative positions of semantic landmarks such as doors,
tables, etc. useful. Such information, i.e. the distribution of
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objects around the visually impaired person can be useful for
self-localization as well as navigation/interaction with these
objects. In recent years, advancements in neural networks in
computer vision have made real-time acquisition of this type
of high-level information about semantic landmarks possible
via cameras [4] . This change led to the computation of a
semantic map [5], mostly to just represent the environment,
on top of metric maps in Vision-based Semantic Localization
(VSLAM). A semantic map generally consists of detected
objects in an environment. Such systems are prone to have a
drift in scale and pose, loop closure and global consistency
problems. Here, a more direct way to locate a person inside
of a 2D floor map is proposed by using semantic information
directly in the sensor model. Unfortunately, most approaches
that use landmarks for detection require some kind of
information about the distance and data association. For
example, in case of WiFi-based localization [6]. Semantic
landmarks can best be detected by a camera. However,
distance information is difficult to obtain. Also, data associ-
ation is difficult as it would require tracking every semantic
landmark uniquely. Instead, in this work, we show that
distance information and data association are not necessary.
The only inputs to our system are the object type of the
semantic landmarks, their bearing angles, their detection
scores, and a 2D floor map showing object positions (doors,
tables, windows, etc.) which is generally available for indoor
environments. Moreover, these landmarks are not continuous
but located in the environment sparsely. Thus, the aim of this
research is to investigate the feasibility of using bearing-only,
sparse semantic information for localization, in order to help
visually impaired people.

In this study, x,y,θ pose information on a 2D annotated
floor map is aimed to be retrieved by using bearing angle and
semantic data in a sensor model (Fig. 1). The system includes
semantic information from a spherical camera to acquire a
wide field-of-view, an annotated 2D floor map which has
additional information about certain objects on it and a par-
ticle filter for localization. Object type, detection score, and
bearing angle for each object are considered by the sensor
model in order to take advantage of the semantic information.
Distance information is not included as a part of the sensor
model for localization as it is difficult to obtain. On the other
hand, bearing angle can be very descriptive if the types of the
objects are known since it provides information about their
distribution. Using the proposed system, feedback about the
user’s location as well as the relative positions to a big object
such as windows, doors etc. could be provided. In order to



Fig. 1. Overview of the localization system. Inputs of the particle filter
are sparse semantic information, bearing angle to the objects obtained by a
spherical camera and an annotated 2D map. The output is the pose (x,y,θ)
of the agent on a 2D floor map.

evaluate and design the prepared sensor model, we developed
a simulation environment. The goal is to acquire an error that
will be manageable for a person.

The simulation has been implemented in the Unity cross-
platform game engine.

Unity2 is a cross-platform game engine created by Unity
Technologies, which also offers rendering solutions to dif-
ferent fields. It can simulate a virtual camera and provide
information about the location of various objects inside
the view of the camera. In this work, a realistic office
environment was created by using Unity, in order to test
the algorithm.

II. PREVIOUS WORK

There is a lot of different work with different sensors for
the guidance of visually impaired people. When it comes to
indoor localization, the most natural way for a human is to
locate himself on a 2D floor map. This idea inspired [7] to
include a 2D floor map into their localization algorithm. The
developed method uses a 2D floor map to lift it up to a third
dimension to create a scale-free point cloud for comparison
in different geometrical criteria. The problems with this
method are the assumption of a third dimension (Manhattan
world), unnecessary and heavy computation of creating a 3D
point cloud of an entire floor, and heavy computation during
the matching methodology. In [8] the authors developed
a semantic navigation and obstacle avoidance system for
visually impaired and blind people by using a floor map and
an RGB-D sensor, while another work [9] with a 2D floor
map, an RGB-D sensor, and an object-specific likelihood
maps for each object type showed the use of semantic
information instead of range measurements. The authors
combined the traditional rangefinder perceptual model with
a semantic model to locate a robot while using dense
semantic information. However, dense semantic information

2Unity, https://unity3d.com/

requires semantic segmentation of images and is difficult
to implement. Instead, in this work, we show that dense
semantic information is not necessary to locate a person. In
this work, a bearing only sparse semantic localization method
using a spherical camera has been proposed to locate a person
on an annotated 2D map, without data association or distance
measurement.

III. METHODOLOGY

A. System Setting

a) Problem Setting: The system setting consists of a
2D map of a 3D environment, semantic information, and
a particle filter. The object classes to be used in the sensor
model are limited to tables, windows, and doors in the current
setting. There is no data association i.e. these objects are not
uniquely identified. For example, a table on the map and in a
sensor reading just has the tag “table”. They are annotated on
the map. The agent with a spherical camera obtains a large
field-of-view so that semantic information can be obtained
from every direction. The input has a bearing angle to an
object of one of the annotated object classes. Information
required from the camera are bearing angles to objects, the
types of the objects, and detection scores.

Fig. 2. An overview of the simulation environment.

B. Framework

A typical indoor environment consists of the basic com-
ponents of a room such as doors, windows, tables, etc..
Each of these objects is modeled as game objects in Unity’s
development environment. Game objects can be assigned
many properties such as texture, transformation etc. and can
be controlled by scripts. An office environment was designed
by using objects typically found in offices i.e. desks, chairs,
shelves, monitors, printers etc. An overview of the simulation
environment can be seen in Fig. 2. An agent, which is also



Fig. 3. An agent with a spherical camera attached in the simulation.

another game object, was assigned and controlled by a script
to move around in the designed environment easily. The
agent can be seen in (Fig. 3), along with a representation
of the kind of information used for localization i.e. object
types, bearing angles to the object center, and detection
scores. Physical simulations of the game objects are provided
by Unity’s built-in physics engines. In order to get a view
of the agent’s surroundings, a camera is attached to the
agent. As the agent navigates, the attached camera follows
it. Unity supports rendering images to cube maps. Therefore,
a 360deg view can be captured during the navigation. For
localization, a particle filter has been implemented in ROS
environment. The communication between Unity and ROS
is done via UDP. Different threads run for the particle filter
and the simulation data. The system overview can be seen
from Fig. 4.

For localization, different localization algorithms can be
employed that use bearing-only information, such as Kalman
Filters [10], which can even be performed in 3D maps [11],
as well as Monte Carlo Localization (MCL) algorithms.
Monte Carlo Localization [12] approach has been used
in this project. In Monte Carlo localization, robots with
rangefinders generally use range and bearing angle infor-
mation to compare against a pre-built distance map, while
vision-based methods generally use information from the
camera to compare against a pre-built image map. In vision-
based methods generally, low-level features like points, lines,
and corners are used.

MCL has three stages: prediction, correction, and re-
sampling. At the prediction step, particles are propagated
according to odometry information. Each particle is a pose
hypothesis. Afterward, at the correction stage, these particles
are assigned weights proportional to how much they match
the current measurement. Since localization is assumed to be
a Dynamic Bayesian Network, only the latest measurement
and odometry is used. Finally, at the resampling stage,
particles are resampled according to the assigned weights,
making less likely particles be replaced by more likely ones.

In our method, MCL requires a map M that stores Carte-
sian Coordinates (x,y) of annotated objects from different
predetermined object classes c. The map M is defined as M=
{xn,yn,cn}N

n=1 where N is the number of objects in the map.
MCL also requires odometry u and sensor measurements
Z, which consists of detected object class c, bearing angle
α to the center of the object and detection score w. The
measurement update Z is defined as Z= {(ck,αk,wk)}K

k=1,
where K is the number of objects in each sensor reading.
Using this information, MCL will estimate agent state s =
(x,y,θ) with bearing θ .

The sensor model used at the correction step is defined as
P(Z|s,M). Using MCL we compute the posterior P(st |Zt ,ut)
for time step t as

P(st |Zt ,ut ,M) =

P(Zt |st ,M)P(st |ut ,st−1)P(st−1|Zt−1,ut−1,M)
(1)

For computing our sensor model we group objects belong-
ing to the same class as Oi = {Zk : ck = ci∀k} and compute
the likelihood of an observation as

P({O1, ...,OC}|s,M) =

C

∏
i=1

P({O}i|s,M)
(2)

where C is the number of object classes.
Including different object classes into a sensor model

allows introducing different weights to each class. The object
classes are assumed to be independent. The measurement
probabilities are weighted by P(z|s,M)1/size(Oi). We use the
inverse of the number of objects of the same class present,
in order to prevent the dominance of classes with a large
number of objects. Another reason for this is to be able
to define different standard deviations for different objects
because, as explained in [9], some objects can be more
descriptive than the others. Since the acquisition of semantic
information can be provided by methods which can ensure
detection with a level of certainty for each object type, the
confidence of the detection is included as a part of the sensor
model to reduce the effect of unreliable detections.

P(zk|s,M) =

max(P(zk|s,Mn)∀Mn ∈M|Mn
c = zk

c)
(3)

The particle weights are updated according to the maxi-
mum likelihood correspondence. Therefore, since the objects



TABLE I
ERRORS COMPARING DIFFERENT PERCEPTION MODELS

(FIELDS-OF-VIEW)

Errors
Errors 180deg 270deg 360deg
Mean (m) 0.21069 0.04796 0.03316
Std (m) 0.23469 0.03102 0.01944
Mean (deg) 0.042 0.008 0.004
Std (deg) 0.047 0.007 0.003

in the map and objects in the sensor data are not uniquely
identified, for each observation data, the most likely land-
marks are selected and accepted to be true. This requires
a distinction among objects or a certainty of the pose,
which is difficult to obtain. However, knowing object types
provides the necessary distinction, especially if the number
of elements in an object class is low. In the next section,
the proposed localization method is evaluated under various
conditions of practical consideration such as change of field-
of-view, occluded view, and missing object detections.

IV. EXPERIMENTS

For the experiments, information about objects and the
agent were obtained from Unity with added artificial noise.
The objects in the map or in the observation did not have
unique identification codes. They only had an object cate-
gory they belong. For our experiments, the included object
categories for the perception model were tables, windows,
and doors. The bearing angle was calculated according to
the center of each object with an added artificial noise. A
bounding box of an object was used for calculating the center
for the bearing angle3 calculation. The detection scores were
set to maximum for this experiment since at this stage since
the data source is certain. All experiments were conducted
with 10000 particles and the effects of the field-of-view,
occlusions, and missing detections were evaluated.

a) Different Perception Models: In order to decide
the appropriate field-of-view, three perception models were
implemented for the experiments. Cameras with 180deg,
270deg and 360deg field-of-view were used respectively
during the experiments. Each of them used semantic in-
formation and bearing information. The room was very
symmetric. In fact, the only object that broke the symmetry
was the door. All of the models were run simultaneously
with random initialization in position and orientation. The
generated trajectories can be seen at Fig. 5. The errors are
shown in Fig. 6 and Table I. As expected the model with a
360deg field-of-view converged faster and gave better results
than others, while the worst performance belonged to the
model with 180deg camera. However, all results are accurate
enough to locate a person.

3In real life, this parameter is expected to have a lot of noise, due to
jittery detection of bounding boxes.

Fig. 4. The system overview. Images from a spherical camera, which
is attached to an agent, are used to obtain sensor information. The Unity
map of the environment is used in particle filter for the computation of the
location of the agent.

Fig. 5. Generated trajectories of the different perception models (fields-
of-view). The perception models with the 180deg camera, 270deg camera,
360deg camera are represented in blue, red, and green colors respectively.
The ground truth is given by the black dashed line.

b) Effect of Occlusion: An indoor space can be very
plain without any descriptive features to characterize the
location. It also can be cluttered by many objects and people,
which can block the detection. A localization system using
a camera has to be robust against those problems because
when a camera is used as a sensor, it is very easy to lose
information from something simple like facing to a wall
for a long time. In order to evaluate the effect of this, the
three perception models with 180deg, 270deg, 360deg of
field-of-view cameras were compared in a scenario where
the view of the agent got blocked twice due to facing a
corner. The impact of lost information was also observed
respectively. It should be noted that in this experiment half of
the time the most of the view was blocked for cameras with



Fig. 6. Errors comparing the different perception models (fields-of-view).
The first graph shows the 2D position errors in meters. The second graph
shows the error in angle in degrees.The perception models with the 180deg
camera, 270deg camera, 360deg camera are represented in blue, green and
red colors respectively. The ground truth is given by the black dashed line.

smaller fields-of-view. As expected, cameras with 180deg
and 270deg and could not recover from the loss of infor-
mation, whereas the agent with 360deg camera had 5 cm,
0.03deg mean error and 4 cm, 0.04deg standard deviation.
The trajectory is shown in Fig. 7. The results can be seen
in Fig. 8 and Table II. In this work, the followed approach
used maximum likelihood for object matching without any
data association among objects. Even though it gave good
results with a 360deg camera, with smaller field-of-view
the system could not recover from resulting wrong matches.
High symmetry in the environment and the lack of data
association, i.e. individual object identification creates wrong
matches. This result shows the necessity of keeping field-of-
view as large as possible.

c) Missing Detections: Real systems that acquire se-
mantic information can be expected to miss detections once
in a while. Hence, an experiment was conducted with missing
detections to evaluate the effect of this phenomenon. When
the loss of detection was experienced at a smaller scale,
where at each step the agent lost a random amount of the
detection (up to entire detection), instead of being blocked
for a big amount for a long time, all of the models still
performed accurately. The comparison of the cameras and
the average trajectories are given in Fig. 10, Table III and
Fig. 9 respectively.

V. DISCUSSIONS

One of the concerns about using high-level semantic
features is the input quality. Since in the experiments seman-
tic information was directly obtained from the simulation,
detection errors were not a major issue. However, when

Fig. 7. Generated trajectories of the experiment with missing detections.
The perception models with the 180deg camera, 270deg camera, and
360deg camera are represented in blue, green, and red colors respectively.
The ground truth is given by the black dashed line.

Fig. 8. Errors of the experiment with blocked view. The first graph shows
the 2D position errors in meters. The second graph shows the error in
angle in degrees.The perception models with the 180deg camera, 270deg
camera, and 360deg camera are represented in blue, green, and red colors
respectively. The ground truth is given by the black dashed line.

TABLE II
ERRORS COMPARING DIFFERENT PERCEPTION MODELS

(FIELDS-OF-VIEW) WITH OCCLUDED VIEW

Errors (Occlusion)
Errors 180deg 270deg 360deg
Mean (m) 0.57748 0.22748 0.05762
Std (m) 0.61999 0.41747 0.04620
Mean (deg) 0.038 0.0170 0.004
Std (deg) 0.048 0.0278 0.0031



Fig. 9. Generated trajectories of experiment with missing detections. The
perception models with the 180deg camera, 270deg camera, 360deg camera
are represented in blue, green and red colors respectively. The ground truth
is given by the black dashed line.

Fig. 10. Errors of the experiment with missing detections. The first
graph shows the 2D position errors in meters. The second graph shows the
error in angle in degrees.The perception models with the 180deg camera,
270deg camera, 360deg camera are represented in blue, green and red colors
respectively. The ground truth is given by the black dashed line.

this information is obtained from a neural network like
[4], false positives might cause a higher uncertainty in
measurement quality. In addition, the jitter of the bounding
box i.e. the bearing angle is expected to create a bigger error.
Even though artificial noise was added, the noise in a real-
life implementation is expected to affect the system more
seriously.

Since the approach depends on the number of objects and
their distribution, the system is constrained by the amount
of available information, which might create a problem in a
bigger map due to symmetries, or if the system is expanded
to a navigation method due to insufficient corrections.

Finally, the necessity of having a large field-of-view was
proven in the second experiment.

VI. CONCLUSIONS

This research aimed to obtain the 2D pose of an agent on
an annotated map by including bearing angle and sparse se-
mantic information without any data association or distance
measurement using a particle filter so that a visually impaired

TABLE III
ERRORS COMPARING DIFFERENT PERCEPTION MODELS

(FIELDS-OF-VIEW) WITH MISSING DETECTIONS

Errors (Missing Detections)
Errors 180deg 270deg 360deg
Mean (m) 0.44887 0.28283 0.07261
Std (m) 0.48477 0.42585 0.16332
Mean (deg) 0.067 0391 0.007
Std (deg) 0.072 0.060 0.018

person can be located and informed about his surroundings at
the same time. A simulation was created by using the Unity
game engine to provide the necessary realistic and flexible
environment. The framework was evaluated with different
fields-of-view, under different conditions such as missing
detections and occlusions. Sufficient localization accuracies
were achieved, and the benefits of using a large field-of-view
were brought to light. The next step is to train a CNN like
[4] to obtain real-life semantic information. The final aim of
the study is to test the system in real life.
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