
Data Information Fusion from Multiple Access Points for

WiFi-based Self-localization

Renato Miyagusuku, Atsushi Yamashita and Hajime Asama1

Abstract— In this work we propose a novel approach for
fusing information from multiple access points in order to
enhance WiFi-based self-localization. A common approach for
designing WiFi-based localization systems is to learn location-
to-signal strength mappings for each access point in an envi-
ronment. Each mapping is then used to compute the likelihood
of the robot’s location conditioned on sensed signal strength
data, yielding as many likelihood functions as mappings are
available. Office buildings typically have from several tens to a
few hundreds of access points, making it essential to properly
combine all available likelihoods into a single, coherent, joint
likelihood that yields precise likelihoods, yet is not overconfi-
dent. While most research has focused on techniques for learn-
ing these mappings and improving data acquisition; research
on techniques to adequately fuse them has been neglected. Our
approach for data information fusion is based on information
theory and yields considerably better joint distributions than
previous approaches. Furthermore, through extensive testing,
we show that these joint likelihoods considerably increase the
system’s localization performance.

I. INTRODUCTION

The ubiquity of WiFi networks in indoor environments

makes their use appealing for robot localization systems.

A common technique for designing these systems is to

learn a location-to-signal strength mapping for each access

point in the environment directly from samples obtained at

known locations. This technique is known as fingerprinting,

scene analysis or profiling, and has been widely preferred

by the community due to its higher localization accuracies

in practice [1]. For each access point, the likelihood of

the robot’s location conditioned on sensed signal strength

from the said access point can be computed using its corre-

sponding learned mapping. Therefore, as many likelihoods

as access points are obtained. With typical office buildings

often having several tens to few hundreds of access points,

all these individual likelihood functions must be combined

into a single, coherent, joint likelihood. This joint likelihood

can then be used as the perceptual model of any localization

algorithm. Figure 1 shows an overview of this approach.

Previous work in the area has been focused on proposing

new fingerprinting techniques, such as linear interpolation

in graphs [2], vector field maps [3] and Gaussian Processes

(GPs) [4], [5]. Or extending previous approaches to increase

their precision [6], robustness [7], or address the SLAM

problem [8], [9]. Another active area of research centers
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Fig. 1. WiFi fingerprinting approaches learn location-to-signal strength
mappings for each access point available from a training dataset. Using
these mappings, the likelihood of locations is computed given new sensor
measurements. Finally, all likelihood functions are combined into a joint
likelihood distribution that can then be used by any probabilistic localization
algorithm. In this work we focus on data information fusion algorithms
which enable the computation of efficient joint likelihoods.

around data and training datasets acquisition, for these tech-

niques’ performance heavily relies on them. Previous work

in this area includes filtering data samples and eliminating

redundant access points [10], continuous incorporation of

data samples into the training datasets and re-training of the

models [11], the addition of training samples based on the

expected reduction of localization uncertainty [12], among

others.

Although of vital importance, seldom work has been done

related to methods to combine all individual likelihoods.

To the best of our knowledge, only two approaches have

been used for computing this joint likelihood distribution.

The first assumes mutual independence between the access

points’ signals given locations, and therefore, computes joint

likelihoods as the product of all individual likelihoods or the

log of its product [4]. The second also computes the joint

likelihoods as the product of individual ones but elevates

each one to the power of a “smoothing” coefficient. When

this coefficient is the reciprocal of the number of access

points, as suggested in [5], the model computes joint likeli-

hoods as the geometric mean of the individual likelihoods.

Interestingly, this is equivalent to a Product of Experts model

(PoE) [13]. Under this approach, each mapping is considered

as an “expert” which makes inferences regarding the same

situation, for our particular case, the robot’s location.

Both mentioned approaches weight all models equally;

however, we consider that these approaches are suboptimal



−20−10 0 10 20 30 40 50
x[m]

−60

−50

−40

−30

−20

−10

0

10

y
[m

]

0.0

0.4

0.8

1.2

1.6

p
(z

|x
)

1e−3

(a) Access Point 0
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(b) Access Point 160

Fig. 2. Likelihood distributions generated by two different models, for the
same test point, with darker shades representing areas of higher probability.
Ideal distributions should concentrate most of its probability close to the
robot’s true location (red X). Difference in quality of the predictions is
noticeable, with (a) providing little additional information, as it is almost a
uninformative distribution; and (b) much more, as it narrows down locations
to the upper left corner of the locations space.

as some models provide more information than others and

should be given more importance. To illustrate this, Fig. 2

shows an example of the likelihoods generated by different

access points in an office building. As it can be observed,

the likelihood shown in Fig. 2a provides little information

regarding the robot’s locations as it computes very similar

likelihood values for every possible location. Differently,

the likelihood is shown in Fig. 2b provides a fair amount

of information, as it assigns higher likelihood values to

locations in the top left corner of the locations space.

To incorporate the idea that some models provide better

likelihoods than others, we use an extension of the PoE

framework, named general Product of Experts (gPoE) [14].

gPoE weights each expert’s contribution differently by com-

puting the joint distribution as a weighted geometric mean.

This allows us to regulate the contribution each individual

likelihood has by modifying these weights. Weighted geo-

metric means have also been used to extend another fusion

framework known as the Covariance Intersection algorithm

[15]. Furthermore, under this approach, it has been proven

that weighted geometric means are conservative and effective

in the context of data fusion of dependent sources [16], which

is our case.

Finding an adequate approach for computing these weights

is the most important design choice when employing any of

these frameworks. Works like [14] and [17] have suggested

the use of measures related to the generated likelihoods’ en-

tropy for weights computation. Instead, we chose to employ

the difference in the entropy between the generated posteriors

and an uninformative prior. This measure can be interpreted

as the amount of information gained by making a specific

measurement. The posteriors’ entropy is employed instead

of that of the likelihoods because the entropy of all our

likelihood functions is the same. This is a direct result of

the way we model access points but is rooted in the fact that

all our sensors are similar and work in the same environment.

The remaining of this paper is organized as follows. In

Sec. 2 we derive the different data information approaches

that have been employed for WiFi data information fusion, as

well as gPoE, based on the dependence assumptions placed

on the sensor measurements from each access point. In Sec. 3

we focus on weights computation for gPoE models, starting

by discussing another tentative approach, to then focus on

our proposed measure and both its discrete and continuous

implementations. In Sec. 4 we evaluate the effectiveness

of our approach when used together with a Monte Carlo

Localization (MCL) algorithm [18], as well as how it fares

with previous approaches. Finally, Sec. 5, discusses the

obtained results and concludes this paper.

II. MODELS FOR DATA INFORMATION FUSION

In this work, we focus on data information fusion from

several probabilistic WiFi models. For this, we assume a

mapping has already been learned for each access point, and

do not address the particular mechanisms used for learning

these mappings. The mappings used in this work have been

learned using Gaussian Processes, which given some training

data, generalize these into a continuous function where each

point is considered to have a normal distribution. Hence,

our mappings need only to generate mean and variance

predictions of the access point’s signal strength as measured

for any arbitrary location x. In this work, locations x are x-

y Cartesian coordinates, as we assume the antennas to have

fairly homogeneous radiation patterns, making it unnecessary

to consider the relative angle between them. Although this

is unlikely, the models obtained under this assumption hold

well in practice [6].

As every point in the mapping is assumed to have a

normal distribution, the probability that the signal strength

measurement z was observed at an arbitrary location x∗, is

computed as,

p(z|x∗) =
1

sd[z∗]
ϕ

(

E[z∗]− z

sd[z∗]

)

. (1)

with E[z∗] and sd[z∗] the predicted mean and standard

deviation generated by the model at location x∗, and ϕ(·)
the standard normal distribution function. However, any

other probabilistic model can be used instead, to compute

these likelihoods. For a detailed description of the employed

approach, readers are referred to [6].

As we are interested in the posterior probability of loca-

tions x∗ conditioned on a WiFi measurement z, i.e., p(x|z).
We use Bayes Rule to compute it from the likelihood, as,

p(x|z) ∝ p(z|x)p(x). (2)

Given m access points, and hence m WiFi models, our

problem consists on finding a suitable joint likelihood func-

tion p(z1, z2, . . . , zm|x), which allows proper computation

of posterior distributions.

Using the general product rule of probabilities we can

rewrite p(z1, z2, . . . , zm|x) as,

p(z1, z2, . . . , zm|x) =

p(z1|x)p(z2|z1,x) · · · p(zm|z1, z2, . . . , zm−1,x) (3)

The previous two approaches used for fusing WiFi like-

lihoods can be derived by making different assumptions

regarding the conditional independence of signal strength

measurements zi.



A. Product of likelihoods model

If we assume every two models with measurements zp
and zq to be conditionally independent given a location x,

we have

p(zp|zq,x) = p(zp|x) ∀p 6= q, (4)

which yields the product of likelihood models,

p(z1, z2, . . . , zm|x) =
m
∏

i=1

p(zi|x). (5)

Assuming all individual likelihoods to be conditionally

independent of each other given the location, is a valid

assumption; however, the posterior distributions generated

from this approach often yield overconfident estimations.

This is a common issue with Bayesian updating when several

models are sequentially used for updating posterior beliefs.

Even if the individual likelihoods are not confident in their

predictions, the updated posterior computed will yield an

extremely peaked distribution nonetheless. This is not an

issue if the estimated location is computed directly as the

location which maximizes the posterior distribution, as done

in [4], as the maximum value will be the same regardless of

how smooth or peaked the distribution is (although in this

case, it is more common to use the log of the posterior as it is

smoother and easier to search). However, these overconfident

predictions are not adequate inputs for localization algo-

rithms based on the Bayes Filter, such as the Monte Carlo

Localization algorithm, as these localization algorithms use

the whole posterior distribution, therefore require adequate

variances.

B. Product of Experts model

As by the general product rule of probabilities we

can rewrite p(zp, zq|x) as either p(zp|x)p(zq|zp,x) or

p(zq|x)p(zp|zq,x), by multiplying both expressions we have

that,

p(zp, zq|x)
2 = p(zp|x)p(zq|x)p(zp|zq,x)p(zq|zp,x). (6)

If the models are assumed to be completely dependent,

p(zi|zj ,x) would be fully known, and the previous expres-

sion would be equivalent to

p(zp, zq|x) = p(zp|x)
1
2 p(zq|x)

1
2 . (7)

Applying the same assumptions for m models, we obtain

p(z1, z2, . . . , zm|x) =
m
∏

j=1

p(zj |x)
1
m , (8)

which is equivalent to the product of experts model.

This approach solves the overconfidence issues of the

previous one by smoothing the joint likelihood; however, this

total dependence can generate underconfident predictions.

However, in practice, when using Bayesian filters, these

underconfident predictions yield much better results than the

overly confident ones generated by the product of likelihoods

model.

C. General Product of Experts model

The two previous approaches weight all individual likeli-

hoods equally. As we expressed in the introduction, we con-

sider that this should not be the case, as for a given location

certain WiFi models provide more information than others.

For our approach we use the same complete dependence

assumption. By arbitrarily elevating p(zp|x)p(zq|zp,x) and

p(zq|x)p(zp|zq,x) to the powers of λp and λq respectively,

and multiplying them, we can demonstrate that the following

is also a valid equation for computing its joint likelihood,

p(zp, zq|x)
λp+λq = p(zp|x)

λpp(zq|x)
λq , (9)

p(zp, zq|x) = p(zp|x)
λp

λp+λq p(zq|x)
λq

λp+λq . (10)

Then, for m models,

p(z1, z2, · · · , zm|x) =





m
∏

i=j

p(zj|x∗)
λj





1/
∑m

j=1
λj

. (11)

This results in an equivalent equation as the one used

by the general Product of Experts framework, which com-

putes joint distributions as weighted geometric means of

the individual likelihoods. As this approach assigns different

weights to each expert when aggregating their outputs, if

weighted coefficients are properly calculated, it is possible to

favor experts which contribute more information; generating

more confident posteriors. The issue then becomes, how to

compute these weights; which will be addressed in the next

section.

Figure 3 shows some examples of posterior distribution

obtained from an experiment performed in an indoor envi-

ronment, using the aforementioned approaches for computing

joint likelihoods, and assuming an uninformative prior distri-

bution over locations. As it can be observed, when using the

general product of experts approach more adequate posteriors

can be obtained.

III. APPROACHES FOR COMPUTING WEIGHTS

In this section, we discuss different approaches for com-

puting adequate weights λ for the gPoE model.

The final goal of our system is to fuse the information

provided by our WiFi models (in the order of several tens

to few hundreds of models), into a coherent joint likelihood

which can be used to provide accurate and reliable posterior

distributions of the robot’s location. Therefore, although we

wish to compute the joint distribution of measurements given

locations p(z|x), we are truly interested in the model’s

posteriors, p(x|z). If some models were inherently better

than others (i.e., consistently provide more information), it

would be possible to use a constant weight for each model.

However, for our WiFi models, we have noticed this not

to be the case. The amount of information each model

provides varies depending on its observed signal strength

information; therefore, rather than a constant weight, we

propose to compute weights by learning a mapping over the

signal strength space, i.e., λ = f(z).



(a) Product of likelihoods (b) Product of experts

(c) Our approach

Fig. 3. Joint likelihoods generated using different approaches. Although
ideal likelihoods should concentrate most of its probabilities around the
robot’s true location (red X); extremely peaked distributions as the one
shown in (a) are not desirable as these are overconfident estimations.

This mapping could be learned directly from the same

training data employed to learn each individual WiFi map-

ping. However, this function has a much higher dimension-

ality. While WiFi mappings are R
2 → R (x-y locations to

signal strength), this weight mapping is R
m → R

m (signal

strength of the m WiFi mappings to m relative weights

that need to be considered jointly given our dependence

assumption). Therefore, the required amount of training data

necessary to learn a robust mapping is much higher. To avoid

this issue, we first turn our attention to methods that require

no training datasets.

A measure that can be employed to learn λ without using

labeled data is uncertainty. In general, the uncertainty of a

function can be understood as a measure of the dispersion

of samples obtained from it. If samples are consistent, it is

said that the function has low uncertainty. On the contrary,

if samples are widely dispersed, it is said that they have

high uncertainty. Under this definition, the distribution with

the highest uncertainty is the uniform distribution, as its

predictions are equally dispersed around its whole output

domain; while the one with the lowest uncertainty would be

one where the location is fully known (perfect information),

as the same prediction would always be sampled.

The variance of a function is a common metric used for the

estimation of its uncertainty. Variances are good estimators

of uncertainty only for unimodal functions and are sufficient

only if such function has a Gaussian distribution. Even

though Gaussian Processes assume each point in the map-

ping has a Gaussian distribution, i.e., p(z|x) ∼ N (µ, σ2),
there is no such assumption regarding its posterior p(x|z).
Joint posterior distributions generated by WiFi models are

mostly unimodal; however, individual posteriors distributions

generated by each access points are not. Making not only

variance a poor estimator of uncertainty, but also making

the likelihood of predictions at the ground truth and cross

entropies poor estimators of performance. To illustrate this,

Fig. 4 shows several examples of individual posteriors gen-

erated by the WiFi models presented in [6]. As it can be

observed, although the posteriors shown in Figs. 4c and 4e

have high uncertainty (they are almost uniform distributions),

their variance is lower than that of posteriors in Figs. 4d

and 4f. This occurs as variance cannot properly quantify

the uncertainty of the posterior in Fig. 4c because this

distribution is multimodal and the one in Fig. 4e although

unimodal, it is not Gaussian, which makes its variance

insufficient for determining the uncertainty of its predictions.

A metric which remains reliable regardless of the dis-

tribution’s modality is entropy. Entropy is a central metric

employed in information theory, which, similarly to variance,

quantifies the amount of uncertainty of a random variable.

Specifically, Shannon entropy is employed in this work.

Shannon entropy is defined as the expected amount of infor-

mation encoded in a discrete random variable. For a variable

X with possible discrete values {xi}i=1:k, and corresponding

point mass probabilities {p(xi)}i=1:k, its Shanon entropy

H(X ) measured in nats, is computed as,

H(X ) = −
∑

xi∈X

p(xi)ln(p(xi)). (12)

The entropy of X takes its minimum value for a distribu-

tion with all its probability concentrated in a single element

xi; which results in H(X ) = 0 (perfect information). And,

it takes its maximum value for a uniform distribution; which

results in an entropy H(X ) = ln(k).
It is also possible to measure the entropy of a random vari-

able conditioned to a measurement. For example, after the

measurement zobs has been acquired, the resulting entropy

of X becomes,

H(X|zobs) = −
∑

xi∈X

p(xi|zobs)ln(p(xi|zobs)); (13)

which, contrary to variance, adequately quantifies the dis-

tributions uncertainty of the posteriors shown in Fig. 4.

Conditional entropy for posteriors in Figs. 4c and 4e is larger

than in all other cases, as expected from our definition of

uncertainty.

A. Minimum Entropy (gPoE minH)

Using this more reliable measure of uncertainty, it is

possible to compute gPoE weights, so that the resulting

joint likelihood has the minimum possible uncertainty, i.e.,

minimum entropy. However, this is not recommendable, as

uncertainty is related to the precision of the distributions, not

their accuracy. Therefore, even if a distribution has low un-

certainty, it could still produce samples far from the true one.

Models that generate such distributions, under the product of

experts formulations, are denominated “bad experts”. With

both the PoE and gPoE models being considerably sensitive

to them due to their aggregation method, the product func-

tion. As experts are multiplied, each expert has “veto” power.

Therefore, it is sufficient for a single bad expert to output

low-value probabilities for the joint prediction to output a



20 10 0 10 20 30 40 50 60
x[m]

60

50

40

30

20

10

0

10

y
[m

]

0.0

0.3

0.6

0.9

1.2

p
(x

|z
)

 

1e 3
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(b) Var:480 H(x|z):5.55

Test Point 20, AP 120
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(c) Var:511 H(x|z):5.93
Test Point 40, AP 080
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(e) Var:529 H(x|z):5.92
Test Point 60, AP 000
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Fig. 4. Example of posterior distributions conditioned on a single access
point (AP). Two figures are shown per test point. Those on the left (a,c,e)
having less uncertainty than those on the right (b,d,f). All posteriors show
their computed variance and conditional entropy (the model with lower
uncertainty is highlighted in bold). As observed, conditional entropy reliably
assigns a lower uncertainty to models on the right, while variance does not.

low value. If experts are trustworthy, this is a very desirable

characteristic, as it allows for joint likelihoods to produce

highly confident predictions. However, in the presence of

bad experts, it compromises the robustness of the approach.

Figure 5 shows an example of this occurring in practice;

where the joint distribution of minimum entropy under the

gPoE model (Fig. 5b) places over 80% of its weight on a

single model, which was a bad expert. When compared to

the resulting distribution under the standard PoE approach

(Fig. 5a), the issues with this approach become evident.

B. Information Gain (gPoE deltaH)

The gPoE model can overcome the effect of bad experts by

assigning low weights to them, which would diminish their

effect on the joint likelihood, with a weight of zero, totally

removing them. However, identifying such bad experts is

not trivial without an error metric. It is also possible to

mitigate their effects if most of the experts in the system are

reliable. In this case, and if the number of experts is high,

by combining all these experts, the impact of the bad ones

would be reduced. In order to maximize robustness assigning

an equal value to all models, as PoE does, may seem ideal

as it minimizes the effect each individual likelihood has over

the joint likelihood. However, it is important to understand

(a) PoE posterior (b) Minimum entropy
posterior

Fig. 5. While minimizing entropy yields better distributions in general, for
certain cases, as the one illustrated (right), it fails. Failure occurs when a
bad expert dominates the optimization, and generates a very confident, but
wrong distribution. In such cases posteriors generated by the standard PoE
approach (left) are considerably better.

that only informative likelihoods can mitigate the effects of

bad experts. Consider a gPoE where experts generate the

following likelihoods l, with Gaussian distributions N (µ, σ2)

l = {N (0, 100),N (0, 100),N (0, 1),N (0, 1),N (1, 1)}.

With l1 and l2 having much higher uncertainty than the

remaining 3, and l5 being a bad expert.

Now considering the following gPoE models, the first,

gPoE1, equally weights all experts, i.e., λ1:5 = 1; and the

second, gPoE2, disregards the highly uncertain models l1
and l2 and equally weights the remaining 3, i.e., λ1,2 = 0
and λ3:5 = 1. We obtain that the joint distributions are,

gPoE1 = N (0.331, 1.656)

gPoE2 = N (0.333, 1.0)

For this example it can be easily argued that gPoE2 is

a better posterior, as the effect of the bad expert is equally

compensated as in gPoE1, while maintaining an adequate

variance. If maximum likelihood is used to evaluate the

generated distributions, gPoE2 has a higher probability with

gPoE1(x = 0) = 0.236 and gPoE2(x = 0) = 0.377. In fact

using maximum likelihood estimation, if it is not possible to

discern among good and bad expert, gPoE2 is ideal under

the gPoE framework.

Taking inspiration from these ideas, we propose computing

λ using the gain in information from a uninformative prior

to the posterior of locations conditioned to signal measure-

ments. We compute this information gain as,

λj = H(x)−H(x|zj), (14)

with H(x) being the entropy of the robot’s location x and

H(x|zj) the conditional entropy of the location given the

signal strength measurement zj from the access point j.

This measure completely removes models that gener-

ate uninformative posteriors, as they would be assigned a

weight of zero. The weights for the example previously

used to illustrate the effect of bad experts become λ =
{0.0009, 0.0009, 0.9347, 0.9347, 0.9347} (for k = 20 and

x ∈ [−5, 5]), and the joint distribution N (0.333, 1.002),
which is almost equal to gPoE2 - considered ideal in our

previous example.

We compute this measure by discretizing the location

space into a grid {xi}i=1:k and assuming its mass point



probabilities to be proportional to their probability density

functions, so Eq. (14) becomes,

λj = log(k) +
1

d

k
∑

i=1

p(zj |xi) log(p(zj |xi))− log(d), (15)

with d =
∑k

i=1
p(zj|xi).

As the weight λj for the access point j only depends on

its measured signal strength zj , it is tractable (memory wise)

to compute Eq. (15) for all access points j at several signal

measurement values beforehand and cache them in memory

for faster online evaluation of λ. Then, any observed signal

strength z, can be interpolated from stored values in memory.

It is also possible to generalize our measure for its use

with continuous variables. This avoids the discretization of

the location space and, more interestingly, provides an ana-

lytical solution for weight computation. Although continuous

implementations are computationally faster and can provide

truly interesting and valuable insights, their derivation is

often non-trivial.

C. Gaussian Processes (gPoE GP)

As previously mentioned, it is also possible to learn the

mapping z → λ, directly from training data. The main

advantage of training models with recorded data is the

possibility of employing error metrics, instead of metrics that

solely rely on entropy. Error metrics refer to those that are

derived from the comparison of the proposed solution to the

ground truth solution for the particular example. The main

advantage of using an error metric is that bad-experts can be

easily identified and eliminated.

More specifically, the error metric chosen for this section

is the cross entropy of the generated posteriors conditioned

on measurements with respect to a prototype distribution,

in this work, a bi-variate normal distribution centered on the

ground truth location xgt with a standard deviation σce. That

is:

CE(x|z) = log(c)−
∑

xi∈X

N (xi;xgt, σ
2
ce) log(p(z|xi)),

(16)

with c =
∑

xi∈X
p(z|xi). Lower cross entropy values are

desired, as cross entropy can be understood as the weighted

average of the model’s negative log likelihood. By not only

computing the likelihood of the ground truth, but also the

likelihood of neighboring locations, a more robust metric is

computed. For our case, the selected standard deviation for

the prototype distribution, σce, is set to 1.5 m, as posteriors

are not expected to have lower standard deviations.

The main drawback of this approach is that error metrics

can only be applied to labeled training data, which is sparse

due to the high dimensionality of the mapping of interest.

As data-driven approaches lack generalization outside their

training inputs, the lack of large and representative enough

training datasets is a big issue. To overcome this fragility

against small training datasets we use the previously defined

information gain as a prior over the data-driven model. By

relying on this prior when no data is available, the model’s

outputs can be generalized outside its confined training

input space. It can be considered that this proposed method

enhances the previously proposed deltaH metric by using

training data.

Specifically, we use Gaussian Processes (GPs), which can

be used to learn complex mappings by defining a mean and

a kernel function. Readers interested in GPs are referred to

[19] for an in-depth description of this approach, and to [20]

for an example of how priors over training data can enhance

GP-based models.

To achieve this, we set the information gain function

Eq. (15) as the GP’s mean function. The mapping is then

learned from training data using the same training data

employed to learn the individual WiFi mappings, (X,Z)
(with X being the matrix of the n locations where the signals

Z from the m access points were acquired). The optimal

weights for these data points are computed by minimizing

Eq. (16), as

Λ = argmin
λi

log(c) −
∑

xk∈X

N (xk ;xgt, σ
2

ce)

m∑

j=1

λi,j log(p(zi,j |xk)),

(17)

for all i ∈ 1 : n, with,

c =
∑

xk∈X

exp





m
∑

j=1

λi,j log(p(zi,j |xk))



 . (18)

Solving Eq. (17) using any convex optimization method

(conjugate gradient descend in this work), yields the optimal

weights matrix Λ ∈ R
n×m, with n being the number of

training points and m the number of access points.

A GP is then learned using training data pairs {Z,Λ}
with the information gain equation as its mean function

(m(z) = H(x) + H(x|z)). Once kernel parameters have

been learned following the procedures described in [19],

weights are computed given an arbitrary new measured signal

strength vector znew, as the mean predicted value of the

learned GP and considering the new input-outputs learned

as well as the mean function, as,

λ = H(x)−H(x|znew)+

k(Z, znew)
T (k(Z,Z)+σ2

mIm)−1 (Λ−H(x) +H(x|Z)) ,
(19)

with k(·, ·) being the learned kernel function.

IV. EXPERIMENTAL EVALUATIONS

A. Testing environments and datasets

For the evaluation of our proposed approach, we surveyed

three different buildings at the University of Tokyo, shown

in Fig. 6. For all tests, a notebook was placed on top of

a Pioneer 3 DX mobile robot with the notebook acquiring

all signal strength measurements at each building, and the

Pioneer robot providing mobility. Recorded data were: signal

strengths, odometry, and laser rangefinder measurements; all

recorded with timestamps in a rosbag and available online1.

1http://www.robot.t.u-tokyo.ac.jp/∼miyagusuku/software

http://www.robot.t.u-tokyo.ac.jp/~miyagusuku/software
http://www.robot.t.u-tokyo.ac.jp/%7emiyagusuku/software
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Fig. 6. Occupancy grid maps of the environments used for testing and the
robotic platform employed.

For all tested environments, an initial run with the robot was

performed in order to collect the training dataset; and two

additional testing datasets were obtained at a later date. The

robot was operated continuously, without stopping, at speeds

between 0.18 and 0.35 m/s.

Signal strength information was recorded only from bea-

con frames to guarantee that signals come from access points

and not mobile users. Both signal strengths and odometry

data are utilized in our localization algorithm, while range

data is only used for building occupancy maps and obtain-

ing datasets’ ground truth locations (for both training and

evaluations).

For all approaches, WiFi models were learned using

the approach described in [6] and tested on two different

datasets. Reported values are the average performance of

these two testing datasets.

B. Cross Entropy

To quantify the quality of the generated joint likelihood

functions, we compute their cross entropy scores as in

Eq. (16). Figure 7 shows the average and maximum cross

entropy scores for the discussed models in this work: the

standard PoE approach as well as all proposed gPoE models:

minH, deltaH, and GP. Lower cross entropy scores indicate

better joint posteriors as they would be closer to the ideal

joint distribution. Models should not only have low average

cross entropy scores but also low maximum cross entropy

scores. Large maximum cross entropy values indicate that for

some test inputs, generated likelihoods are not adequate. This

can considerably decrease the reliability of the localization

system using these distributions, hence it is important to

avoid models that generate them.

As it can be observed from the figure, all gPoE models

have lower average cross entropy scores, which means that

on average, they generate better distributions. They also

possess either similar or lower maximum cross entropies,

(a) Average cross entropy (b) Maximum cross entropy

Fig. 7. Average and maximum cross entropy scores for all testing datasets
using PoE, gPoE minH, gPoE deltaH and gPoE GP models.

Fig. 8. Localization errors using different data information fusion ap-
proaches.

which means they are as reliable as the classic PoE approach,

with the exception of gPoE minH. As previously discussed,

minimizing entropy is not a reliable way to compute joint

posteriors due to bad experts. This experimental validation

corroborates that such bad experts do occur (and frequently)

in WiFi models. Hence, the use of gPoE minH is discour-

aged.

C. Localization accuracy

To test the localization accuracy improvements by using

the proposed models, we use them as the perceptual models

of a standard Monte Carlo Localization (MCL) algorithm.

MCL algorithms are a family of algorithms widely used for

localization in robotics, that implements a Bayes filter, and

are often the default choice given their ease of implementa-

tion and good performance across a broad range of localiza-

tion problems - readers are referred to [6] for discussions on

how to implement MCL using WiFi perceptual models.

Using the time-stamped data logs recorded, all evaluations

are performed in a real-time manner using the open source

framework ROS (Robot Operating System [21]). Localiza-

tion errors are defined as the x-y Cartesian distance between

the ground truths (as computed by laser rangefinders) and

those estimated by WiFi. Figure 8 shows the average lo-

calization errors obtained using these different MCLs with

100, 500 and 1000 particles. Average localization errors were

computed by averaging 50 runs of each testing configuration

(testing dataset, perceptual model and number of particles).

As it can be observed there is a notable improvement

in localization accuracy when the proposed gPoE models

are used (gPoE minH was not tested, as its inadequacy

was already concluded). It is particularly notable that gPoE

deltaH is able to obtain localization accuracies comparable

with gPoE GP although no training data is used for its

computation.



V. CONCLUSIONS AND FUTURE WORKS

In this work, we have explored a vital, yet commonly

overlooked step in WiFi-based localization: the generation

of joint likelihood distributions based on the aggregation of

individual likelihoods. To accomplish this, we have proposed

the use of the general product of experts framework. This

framework computes joint distributions as the weighted ge-

ometric average of individual likelihoods. To compute these

weights several methods have been presented, discussed and

compared. While this work has focused on the particular

application example of WiFi-based self-localization, data

information from multiple sources is an important subject

for many applications, and it is our strong belief that the

developed models can be applied to most of them.

Two methods based on information theoretic measures

and that do not require training data have been introduced:

gPoE minH and gPoE deltaH. gPoE minH casts weights

computation as a minimization problem, while gPoE deltaH

computes them based on the information gain from priors to

posteriors when conditioning locations to sensor data. From

the two, gPoE deltaH is preferred as experimental evaluations

have shown that although gPoE minH had better average

performance, it had very poor worst-case performance.

To take advantage of available training data, even if sparse,

a third method based on a data-driven approach, named

gPoE GP, has also been proposed. gPoE GP first computes

ideal (in terms of minimal cross entropy) weights for each

training data point available; then uses training data with

their corresponding ideal weights to learn a signal strength

to weights mapping using Gaussian Processes. Gaussian

Processes effectively learn functions to compute weights

and impose smoothness constraints (which improved model

robustness to noise and worst-case performance). To handle

the lack of dense training data, the previously proposed gPoE

deltaH weights were used as priors over the GP. Hence,

when data is available, the system tends to the computed

ideal weights, while when no data is available, it tends to

gPoE deltaH weights. This allows gPoE GP to have better

average performance than gPoE deltaH while maintaining an

acceptable worst case performance.

Experimental validations demonstrated the advantages of

gPoE deltaH and GP over the classic PoE model, as well

as the relation between better joint distributions, in terms

of lower cross entropy scores, with better localization ac-

curacies. Therefore, both gPoE deltaH and GP are strongly

recommended over the classic PoE model. Among gPoE GP

and gPoE deltaH, the latter is recommended when training

or evaluation times are restricted/critical or when too few

training data is available; if there are no such restrictions,

gPoE GP is recommended as it consistently obtained better

localization performance.

Future work will explore other data-driven methods which

could take advantage of the underlying WiFi models, which

are generative probabilistic models, hence could be used to

generate as much synthetic data as necessary to train more

complex models, as well as other applications.
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