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Abstract: Laser rangefinders (LRFs) are widely used in mobile robot localization. However,
glass, which is common in indoor environments, can only be detected by LRFs in limited
incident angles, instead of all incident angles like other objects. As common representations
of the environments do not consider this property, glass can negatively influence the robot’s
localization accuracy by causing a mismatch between measurements and the map even when
locations are correct. A solution to this problem is to build a glass confidence map, which shows
the probability of each object in the environment to be glass. If glass confidence maps want
to be built online, it is important to consider pose uncertainty. Pose uncertainty can cause
incorrect registration of glass probabilities, i.e., the incorrect grid is assigned the computed
glass probability. In this work, we propose a robust registration method that explicitly considers
pose uncertainty. The proposed method is verified experimentally, and results show that glass
confidence maps can be built online successfully and with high accuracy.

1. INTRODUCTION

Localization is fundamental for mobile robots to perform
other various tasks, such as search and rescue, housework
and elderly care. Besides, there is a high potential for
the use of mobile robots in indoor human environments,
such as homes, shopping malls, and offices, where glass
is common, as shown in Fig. 1. Therefore, being able to
localize accurately and robustly in glass environments is
important for mobile robots.

Techniques like Simultaneous Localization and Mapping
(SLAM) have been developed in order to enable robots to
localize automatically and online. Several current SLAM
algorithms use Laser rangefinders (LRFs), because of
their high accuracy for measuring distances. However,
LRF-based SLAM systems perform unsatisfactorily in
glass environments because glass can only be detected by
LRFs in limited angles, instead of in any angles for other
objects (Foster et al., 2013). This limitation disturbs the
existing scan matching schemes (Moon et al., 2010), and
consequently negatively influences localization accuracy.

Previous research dealt with the above-mentioned local-
ization and mapping problems in glass environments. To
improve localization accuracy, Munoz and Pimentel (2005)
changed localization error function to give less penalty
to large distance mismatch caused by glass. However,
experiment results showed their method only worked well
when the glass area is small. Additionally, Kim and Chung

Fig. 1. Glass is very common in human indoor environ-
ments (Jiang et al., 2017).

(2016) built a localization method which analyzed all
possible situations caused by up to two layers of glass.
Experimental results showed their method improved the
robot’s localization accuracy greatly at the cost of much
higher computational cost, as all possible situations are
considered. Koch and Nchter (2017) and Koch et al. (2017)
enhanced current SLAM systems by first classifying LRF
scan points into several types, such ”transpent surface”
or ”behind transpent”, and discarding certain error-prone



types of points while building maps. However their method
classified LRF scan points seperately every time they are
received, and did not take advantages that the same object
would be scanned for multiple times while robot is moving.
This caused their results less relaible, and in their work,
further pose process is recommended.

We previously proposed to build a glass confidence map
aiming to improve the localization accuracy in glass envi-
ronments (Jiang et al., 2017). The glass confidence map
shows objects’ probabilities of being glass on the map,
which can be used to, for example, adjust the penalty of
error caused by glass, or reduce the computational burden
of Kim and Chung (2016). In order to build glass confi-
dence maps, our previous work proposed the use of a neural
network-based classifier. The network computes a pseudo-
probability of objects to be glass or non-glass. Pseudo-
probabilities were updated using incoming measurements
as well as the occupancy grid map (Elfes, 1989) of the
environment, which could only be obtained after all mea-
surements were acquired. Therefore, in a new environment
whose occupancy grid map is unknown, it would be neces-
sary to run a SLAM algorithm first in order to build the
occupancy grid map, and then build the glass confidence
map in post-processing. This limits the potential use of
the glass confidence map for improving the localization
component of SLAM approaches. If our previous approach
is applied directly after each partial map is generated by
the SLAM algorithm, pose uncertainty causes incorrect
registration of glass probabilities, i.e., the incorrect grid in
the occupancy map is assigned the computed glass prob-
ability. In this paper, we focus on robust glass probability
registration aimed to enable glass confidence maps to build
online, robustly and with high accuracy.

The rest of this paper is organized as follows: Section II
provides an overview of the previously proposed neural
network classifier and the offline glass probability regis-
tering method, for a better understanding of this work.
Section III introduces the newly proposed online glass
probability registering method, and also the combination
of it with the neural network glass classifier described in
Section II. Section IV presents verification experiments
in an office-like building. Finally, conclusions and future
works are drawn in Section V.

2. OVERVIEW OF GLASS CLASSIFIER

The main physical principle governing LRFs is light re-
flection. LRFs work by sending a laser beam of light and
waiting for its return once it has hit the nearest object in
its path. By measuring the time of flight required by the
laser beams to return, LRFs can very accurately calculate
the distance to the object that caused the reflection. Other
than the distance to the closest object, LRFs also provide
the energy of the received laser beam. Received energy
depends on the distance to the object, the transparency
and reflective index of the object, and the incident angle
at which the laser beam hits the object.

As glass and non-glass objects have very different trans-
parency and reflective indexes, it is possible to classify
objects like glass or non-glass based solely on their LRF
intensities when taking into consideration the influence
of distance and incident angle. Using this idea, in our
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Fig. 2. Structure of the neural network employed in our
previous work (Jiang et al., 2017).

previous work we proposed a glass classifier using a neural
network. The proposed network considered the distance
d and received intensity i measured by the LRF, as well
as the incident angle θ of the laser beam with respect to
the object. The system worked by having the robot use
its equipped LRF to continuously scan the environment,
emitting n laser beams evenly distributed in its scanning
angle range, and collecting the reflected beams. Using this
information, the sensor calculates distances based on time
of flight and outputs both the distances as well as the
received intensities for each of the n beams. Distances
are then used to compute the incident angles of the laser
beams by detecting straight lines using Hough Transform
(Ballard, 1981).

Using extensive labeled training data, the glass classifier
learns how to detected if an object is glass or non-glass.
That is, it learns the mapping

f(i, d, θ) → g (1)

with g being the objective class.

Specifically, the employed network was a simple 4-layer
fully connected neural network, as the one shown in Fig. 2,
with a softmax function on the output layer. The softmax
function was used so the outputs of the network would be
pseudo-probabilities p(g) (for training values larger than
0.5 were considered glass, and otherwise non-glass)

Using this network, for all n beams the vector pg =
{f(ik, dk, θk)}nk=1

could be computed. Experimental val-
idations showed that this network was indeed capable of
correctly classifying glass and non-glass objects.

3. ONLINE GLASS CONFIDENCE MAP BUILDING

3.1 System Overview

The outline of our approach for building online glass
confidence maps is shown in Fig. 3, with the component
newly proposed in this paper being the improved glass
probability registering method, marked in red.

Our proposed system records both distances to objects as
well as received signal intensities from a single LRF. Using
the same incident angle calculator and neural network
glass classifier used in our previous work, glass proba-
bilities pg are calculated using distance information for



LRF
Incident angle
calculator

Neural Network
Glass Classifier

Robust Glass
Registration
and update

Grid-based
SLAM

Glass Map

d

d

d,i

θ

pg

pose, pose var

occupancy grid

Fig. 3. Overview of the proposed online glass confidence
mapping system. In this work we focus on the Robust
Glass Registration and Update module

each scan. As the robot moves through the environment,
a grid-based SLAM algorithm estimates robot pose and
its uncertainty and updates an occupancy grid map of
the environment. While any grid-based SLAM approach
can be used, for our testing we employed the one de-
scribed in Grisetti et al. (2005). Using robot pose, pose
uncertainty, grids’ occupancy, and glass probability in-
formation, our proposed registration algorithm registers,
and updates glass probabilities onto a temporary glass
map. This temporary glass map explicitly considers pose
uncertainty when updating glass probabilities, enabling
a more robust registration. Nonetheless, it can not filter
outliers and may not match the latest occupancy map. In
order to remove noise and be congruent with the latest
occupancy probabilities, the temporary map is filtered in
order to obtain the glass confidence map. As described
before, the obtained glass confidence map can be used with
SLAM to improve robot’s localization accuracy, which will
be considered in future work.

3.2 Robust Registration

Once glass probabilities have been computed, it is nec-
essary to update the glass probabilities of their corre-
sponding cells in the grid map. We refer to this problem
as probability registration. Formally, we need to compute
which grid map cell c or set of cells C that should be
updated using the glass probability p(gj) computed from
the LRF’s jth laser scan. To compute this we make the
following assumptions:

(i) Robot’s pose (x) has a Gaussian distribution with
variance σ2

x, i.e., x ∼ N (x̂, σ2

x).
(ii) Distance measurement (lj), in map coordinates, also

has Gaussian distribution with variance σ2

l , i.e., lj ∼

N (l̂j , σ
2

l ).
(iii) As LRFs distance measurements are considerably

more precise than robot pose estimates its covariance
is considered much lower than that of robot poses,
i.e., σ2

l << σ2

x.
(iv) Robot’s pose and distance measurements are inde-

pendent random variables.

(a) If no uncertainty exists in robot pose or LRF measurements,
the wall’s location can be fully determined.

(b) When considering robot pose and LRF measurements uncer-
tainties, the wall’ location should be represented by a probabilis-
tic distribution.

Fig. 4. Illustration of probabilistic distributions of robot
pose, LRF measurements and measured wall locations
(in green, red and blue respectively). Darker shades
represent higher probabilities.

Given these considerations, we can approximate σ2

x + σ2

l

to σ2

x and hence the distribution of the end point of scan
j becomes

xj = N (x̂+ l̂j , σ
2

x). (2)

For any cell c in the grid map with coordinates c, the
likelihood of the cell to be the true location xj is then
calculated as

p(c = xj) =
1

σx

ϕ

(

|x− c|

σx

)

, (3)

where ϕ(x) = 1√
2π

exp
(

− 1

2
x2

)

is the standard normal

distribution.

For map registration, we analyze two scenarios: 1) low
robot pose uncertainty, and 2) arbitrary robot pose un-
certainty. Figure 4 illustrates both cases. In Fig. 4 (a), we
can observe that under low pose uncertainty, the likelihood
of any grid cell to be the true location xj , other than
the nearest occupied cell ĉj , is low. On the contrary, if
a relatively larger pose uncertainty is considered, as in
Fig. 4 (b), several grid cells have similar likelihoods.

Low pose uncertainty In our previous approach, for any
scan j only the nearest occupied cell ĉj was updated. This



Fig. 5. Process of registering and updating the glass probability onto a temporary glass map.

registration method can be derived if pose uncertainty is
assumed to be considerably low.

By definition, the distance between x̂j and ĉj is the lowest
among all occupied cells. Then, the distance between the
location of any occupied cell c and x̂ can be expressed in
terms of two non-negative values e and δ, with e being
|x − ĉ|, and e + δ = |x − c|. Equation (3) can then be
re-written as

p(c = xj) =
1

σx

ϕ

(

e+ δ

σx

)

(4)

= p(ĉj = xj) exp

(

−
1

2

δ2

σ2
x

)

. (5)

For values of δ twice of σx we the likelihood of cell c drops
to 0.13% and for δ values 3 times of σx it drops to around
1%. Under this low pose uncertainty assumption, the right
hand exponential term makes p(c = xj) become consider-
ably lower even for cells c adjacent to ĉ. This assumption
is fair for offline SLAM approaches whose resulting occu-
pancy grid maps have been updated with all measurements
acquired along the whole robot’s trajectory and whose
pose uncertainties have been minimized. However, when
performing online mapping, this assumption does not hold,
as robot pose uncertainties are often comparable if not
larger than grid map resolutions of typically 5 cm.

Arbitrary pose uncertainty Our current approach can
be considered an extension of the previous one, where
we relax the low pose uncertainty assumption. If we are
to register glass probabilities to multiple grid cells two
options are viable. Either update the probability of all
likely grids using p(gj), where the definition of likely needs
to be addressed, e.g., within two standard deviations. Or,
update grid probabilities taking into consideration the
likelihood of the grid to be the true location of the endpoint
xj . In this work, we opted for the second option, and
propose a method to register glass probabilities to multiple
cells with varying degrees of confidence.

Therefore, the problem now becomes how to modify p(gj)
as to reflect this varying confidence. An alternative is to
assume p(gj) has been generated from a known prob-
ability distribution, and then increase the distribution’s
concentration parameter according to the likelihood p(c =
xj). For example, for a Gaussian distribution, we would

increase its variance for less likely cells. The issue we
encounter with such an approach is that outputs from
the neural network glass classifier do not belong to any
particular probability distribution family, what is more, it
does not even have a proper probability distribution but
rather a pseudo-probability obtained by normalizing p(gj)
and p(¬gj) to sum up to 1.

Instead of assuming a particular distribution for p(gj), we
use an exponential decay equal to the right hand term of
eq. (5) to reduce its certainty. Specifically, we compute the
glass probability at cell c, p(gj , c), as

p(gj , c) = (p(gj)− 0.5) exp

(

−
1

2

|xj − c|2

σ2
x

)

+ 0.5. (6)

This equation results from assigning the probability gener-
ated by the neural network classifier to the nearest neigh-
bor ĉj , p(gj , ĉ) = p(gj), and penalizing neighboring cells
using the aforementioned exponential decay. We formulate
this equation so that when δ → ∞, p(gj, c) tends to 0.5, as
this is the uninformative probability. A glass probability
lower than 0.5, implies that observed cell is not glass.

3.3 Probability Update

Regardless of the registration method of choice, the fol-
lowing equation is used to update its glass probability if it
already has a prior probability registered to it

ppost =
ppriorp(gj , c)

ppriorp(gj , c) + (1− pprior)(1− p(gj , c))
, (7)

where pprior is the grid’s previous glass probability, and
ppost is its glass probability after incorporating p(gj). The
updated probability ppost serves as new pprior if another
glass probability needs to be incorporated.

This equation is derived under the assumption that each
new p(gj , c) is independent of each other. An uninforma-
tive prior pprior = 0.5 is assumed when no measurements
have been obtained for any particular cell.

3.4 Implementation considerations

Figure 5 shows our registration and update process. For
each LRF scan, corresponding glass probability p(gj)



(a) Blueprint of the experimental environment (ground truth)

(b) Test 1: The map changing problem causes a lot of occupied grids are in gray, meaning not enough
glass probability were registered correctly for them

(c) Test 2: Most grids are registered correctly as glass or non-glass, which shows the advantages of our
robust registration method

Fig. 6. Generated glass confidence maps with different registration methods

and nearest occupied cell ĉ are computed. To reduce
computational cost, p(gj , c) is computed only for grids c
close to ĉ, specifically either the 3 × 3 or a 5 × 5 grids
around ĉ. Using eq. (7) the probabilities in these grids are
then updated onto a temporal map.

Whenever a glass map is requested, our system inspects
only the cells in its temporal glass map which correspond
to occupied cells in the latest occupancy grid map avail-
able. These grids are then overlain over the occupancy grid
map, showing glass probabilities in different shades of red
for glass and blue for non-glass. This additional filtering
step serves to match glass and occupancy maps as well as
to reduce noise and outliers.

4. EXPERIMENT VERIFICATION

To validate the proposed method, experiments were per-
formed in an indoor environment.

4.1 Environment and Settings

The testing environment is shown in Fig. 1, an office-
like environment where a large area of glass exists. For
evaluation, the blueprint of the environment that shows
glass and non-glass objects, Fig. 6(a), was used as the
ground truth. Please note that LRF may see wall/objects
behind glass and show them on the map. However, in this
environments, the wall behind glass is outdoors and partly
invisible to LRF due to strong sunlight outsides. Therefore,
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Fig. 7. Percentage of classification errors: direct registra-
tion, and robust registration with 3x3 and 5x5 grids

they are exculded from evaluation and is not shown on
ground truth. The experiment was performed using a
Pioneer 3-DX mobile robot, a Hokuyo UTM 30LX-EW
LRF mounted in the front of the robot, and a ThinkPad
P50 laptop to process data and build the map. Our system
ran on Ubuntu 16.06 and the Robot Operating System
(ROS) Kinetic version, with gmapping (Grisetti et al.,
2005) was used to implement SLAM and generate the
occupancy grid map required by our method.

4.2 Results and Discussions

Glass probability maps were build using either the low
pose uncertainty assumption (direct registration), where
only the nearest occupied cell was updated, or our pro-
posed robust registration method (considering either 3× 3
or 5×5 grids). Due to the probabilistic nature of the SLAM
algorithm used, using the data collected in our testing
environment, 50 tests were performed.

Figures 6(b) and 6(c) show examples of the glass confi-
dence maps obtained with direct and robust registration
respectively. In these maps, unoccupied areas are shown
in white, while unknown areas are shown in green color.
For the occupied areas, glass probabilities are shown in
different colors, changing from blue (100% certain of be-
ing non-glass) to red (100% certain of being glass); gray
shows high uncertainty, which usually because too little
glass probability is registered to these grids. In each map,
the same area is enlarged for better observation. Figure
7 shows the percentage of classification errors obtained
for each registration method. Percentages were computed
considering only the areas of the map that have both walls
and glass, as these are our areas of interest.

From Fig. 6(c) we can observe that our proposed method
can successfully build glass confidence maps online. Figure
7 shows that our robust registration method not only
has lower mean classification errors but also considerably
lower worst performance, as well as more consistent results
(lower variance). Therefore, it can be argued that it is more
robust. Finally, as experimental results show that using
either 3x3 or 5x5 grids give similar results, 3x3 grids are
recommended due to their lower computational demands
on the system.

5. CONCLUSIONS AND FUTURE WORK

In this paper, to enable robust online glass confidence
mapping, a new glass probability registration method was
proposed. In the proposed method, glass probabilities are
registered online based on robot pose and LRF measure-
ments, without needing a completed occupancy grid map
of the environment. An experiment was performed in an
office environment, in order to verify the proposed method.
Results show that the proposed method consistently gen-
erates more accurate glass probability maps than the pre-
vious approach utilized. Future works related to this paper
are mainly about using the built glass confidence map to
improve the robot’s localization in glass environments.
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