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Abstract— In this paper, we propose a novel method to
predict the trajectory of a following vehicle, based on the
operation characteristics of a driver. If a lead vehicle suddenly
decelerates to avoid colliding with interrupting vehicles, it may
lead to an accident with the following vehicle. To prevent such
accidents, it would be beneficial to predict the future positions
of surrounding vehicles. Previous studies have proposed similar
prediction methods; however, these studies have not considered
the operation characteristics of drivers, even though the pre-
diction performance largely depends on these characteristics.
In this research, we assumed a driving scene wherein a human
driver follows an autonomous vehicle. The proposed method
is implemented in the autonomous vehicle. Consequently, the
method is able to predict the trajectory of the following vehicle
operated by a human driver. The contribution of this paper
is to estimate the operation characteristics of the following
driver and to apply the estimated result to obtain the trajectory
prediction. It is demonstrated that the proposed method shows
high prediction accuracy as compared to the previous methods.

I. INTRODUCTION

According to the conducted survey, over 90% of car
accidents have been caused by human errors [1]. To solve this
problem, autonomous driving and advanced driver-assistance
systems (ADAS) have been introduced as solutions that could
substitute or help human drivers. However, the coexistence
between human drivers and autonomous vehicles needs to be
considered as a critical issue as it is impossible to substitute
human drivers all at once. In the environment where people
and automated machines coexist, understanding the operation
characteristics of human drivers is significantly important to
establish safe autonomous driving. A previous study reported
that the adaptive cruise control can effectively maintain a
safe distance from the preceding vehicle; however, it can
occasionally cause a collision with the following vehicle [2].
If the lead vehicle suddenly decelerates to avoid colliding
with interrupting vehicles, it may lead to an accident with
the following vehicle as shown in Fig. 1. Humans require
a certain amount of time to react to sudden events such as
deceleration of the preceding vehicle. Therefore, autonomous
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Fig. 1. Collision with the following vehicle: if the lead vehicle suddenly
decelerates to avoid collisions with interrupting vehicles, it may lead to an
accident with the following vehicle.

vehicles should consider these characteristics of human
drivers and adjust the distance for safety, when a human
driver follows.

There are two requirements to realize safe autonomous
driving. The first one is anticipation of future actions of
surrounding vehicles. If it is possible to anticipate maneuvers
of surrounding vehicles based on the sequence of their past
movements, the autonomous vehicle will be able to generate
a safe path to avoid possible collisions with them. Various
studies have been conducted to achieve this requirement [3],
[4], [5]. However, these methods require specific parameters
to obtain a large impact on the performance although they
can be employed to anticipate future actions. The values of
parameters were statistically determined based on training
data. However, the constant value cannot handle the individ-
ual differences nevertheless each driver may have different
characteristics. Consequently, it may lead to deterioration
of the accuracy of anticipation. For instance, the reaction
time of each driver largely varies depending on various
factors such as age, driving experience, gender, etc. [6].
Previous methods proposed in [3], [4], [5] do not consider
the individual differences, and it may deteriorate the overall
performance of a prediction method.

The second requirement is estimation of the operation
characteristics to overcome the above limitation. Our ap-
proach implies estimating the operation characteristics of
surrounding traffic participants and applying the result to
anticipate their future actions. In [7], a method to estimate
the operation characteristics of the host driver was proposed
based on the extended Kalman filter. This method employs
twelve parameters to model the characteristics of a driver.
Filev et al. considered a driver as the second order system [8],
and two parameters to represent the operation characteristics
were estimated. However, above two papers did not discuss
how to use the estimated results for the trajectory prediction.
Otherwise, it should be noted that Zhu et al. proposed



Fig. 2. Problem definition: the green vehicle represents the ego vehicle, and the red one is the target vehicle. The ego vehicle has measurement devices
used to estimate the distance and speed of the target vehicle. The proposed method is implemented onto the ego vehicle.

a method to predict a trajectory of the following vehicle
using a deep learning framework [9]. It was demonstrated
that the method achieves great accuracy based on their
real experiments. However, the data-driven approach has the
limitation that the performance largely depends on the chosen
training data. If the real conditions differ significantly from
that of the training data, the performance of the approach
may deteriorate.

As only few previous studies focused on both the operation
characteristics and trajectory prediction, we propose a novel
method to predict future positions of the following vehicle.
The proposed method estimates the operation characteristics
of the following driver and applies the estimated characteris-
tics to the trajectory prediction. General Motors (GM) model
is used to model the behavior of the following driver in the
proposed method [10], as it is widely used among available
car-following models. The following driver is stimulated by
the distance and relative speed with respect to the preceding
vehicle, consequently, the driver determines its acceleration
as a response. The model has three parameters to repre-
sent the operation characteristics. Several studies reported
the optimized values of the parameters using real traffic
datasets [11], [12], [13]. However, the values vary depending
across the papers, as all datasets were recorded at different
locations. Therefore, the constant values of the parameters
cannot be adjusted according to the changes in the driving
conditions. To address this limitation, our approach aims to
estimate the real-time values of the parameters, using the
Levenberg–Marquardt algorithm [14], [15]. This approach
takes into account the changes in the driving conditions,
unlike the previous methods based on pre-determined values.
Moreover, the proposed method estimates the reaction time
of the following driver in real time. The previous methods
used the fixed reaction time of 1 s, although the performance
of the trajectory prediction largely depends on the reaction
time [9]. In this paper, the three parameters of the GM
model and the reaction time are defined as the operation
characteristic variables. The proposed method performs the
optimization of the four considered variables and applies the
result to the trajectory prediction at each time step. Owing
to this approach, the trajectory prediction can be robust with
respect to the changes in driving conditions.

II. OVERVIEW

A. Problem definition

This paper assumes the driving condition in which human
drivers and autonomous vehicles coexist. Figure 2 represents

Fig. 3. Schematic of the proposed method: the proposed method consists
of two parts: operation characteristic variable estimation and the trajectory
prediction. The inputs sourced to the method are the position and speed of
the two vehicles, and the output is the longitudinal position of the target
until two seconds in the future.

the driving scene assumed in this paper. The human driver
follows the autonomous vehicle, which has embedded mea-
surement devices such as a GPS tracker and laser scanners
used to estimate movements of the following vehicle. The
sensing range is assumed to be within 120 m, and the
distance and relative speed between the two vehicles can
be estimated. The proposed method is implemented in the
autonomous vehicle in order to predict future positions of the
following vehicle and estimate the operation characteristics
of the driver. In this paper, the autonomous vehicle is defined
as ego, and the following vehicle is defined as target. The
ego vehicle is indicated using green color, and the target
vehicle is depicted using red color.

B. Overview of proposed method

Figure 3 shows the schematic of the proposed method.
It comprises of two parts: estimation of the operational
characteristics and the trajectory prediction. Inputs of the
method are the position and speed of the two vehicles:
ego and target. The position of the ego can be acquired
through the GPS tracker, and the speed can be measured
using a controller area network (CAN) bus. The position
and speed of the target can be measured by laser scanners.
Using this information, four operation characteristic variables



are estimated: three parameters of the GM model and the
reaction time. The estimation results are used as the input
to the trajectory prediction module. The values of the con-
sidered variables determine the acceleration and deceleration
tendency of the following driver, and they significantly affect
the prediction accuracy. The proposed method uses the GM
model to calculate acceleration and deceleration of the target.
Based on the calculated acceleration, a trajectory of the target
is predicted until two seconds in the future.

This paper focuses on the situation when a vehicle follows
the preceding vehicle while keeping the current lane. There-
fore, the proposed method is designed to predict the lane-
keeping trajectory. The method to predict the lane-changing
trajectory is explained in our previous papers [16], [17].
Moreover, only the longitudinal position of the target is
predicted while the lateral position of the vehicle is assumed
as the center of the current lane. As a result, the output of
the proposed method is the longitudinal position of the target
until two seconds in the future.

III. ESTIMATION OF THE OPERATION CHARACTERISTICS

The proposed method considers the following driver as the
stimulus-response system, consequently, the acceleration or
deceleration is derived from the distance and relative speed
between the two vehicles: ego and target. Among various
methods to model the following movement, the proposed
method employs the GM model as it allows achieving good
performance [18]. At any time step t, let the longitudinal
position of the target vehicle be represented by xtn.

âttgt =

[
αl,m(vttgt)

m

(xt−∆T
ego − xt−∆T

tgt )l

]
(vt−∆T

ego − vt−∆T
tgt ), (1)

where xtego represents the longitudinal position of the ego
vehicle, and vtego is its speed. Similarly, xttgt represents the
longitudinal position of the target vehicle, and vttgt corre-
sponds to its speed. α, l, and m are the model parameters to
determine the operation characteristics; ∆T is the reaction
time. These four variables are considered as the operation
characteristic variables in this paper.

The proposed method performs the optimization of the
three model parameters using the Levenberg–Marquardt
algorithm [14], [15]. Although there are many iterative
optimization algorithms, such as the gradient descent or
the Newton method, the Levenberg–Marquardt algorithm is
generally used to solve nonlinear problems. Employing the
algorithm, our method estimates the optimized values at the
current time based on information on the acceleration of the
previous step. To perform optimization of the three model
parameters, the reaction time is used at the previous step.
If optimization fails, or the derived acceleration value is too
large or small, the value of the previous step is used.

After optimization of the three model parameters (α, l, and
m), the estimation of the reaction time is performed. Accord-
ing to the previous study, the reaction time is distributed in
the range between 0.92 s and 1.94 s [6]. Including the room
for distribution, the proposed method identifies the optimal

value of the reaction time from 0.5 s to 2.5 s in increments
of 0.1 s. The value can be derived as follows:

∆T = arg min
∆T

|at−1
tgt − ât−1

tgt (∆T )|, (2)

where at−1
tgt represents the ground truth of acceleration, and

ât−1
tgt denotes the derived value obtained using the proposed

method.
Estimation of the operation characteristic variables is per-

formed following the above process, and the optimal values
are derived at each time step. However, the operation char-
acteristics may not drastically change in a short time period.
Hence, the proposed method defines a sliding window of a
constant size, consequently, the values within the window
are modified by a moving average.

IV. TRAJECTORY PREDICTION

For the prediction of a longitudinal position of the target,
the proposed method calculates the acceleration value using
the estimated values of operation characteristic variables.
Then, the position and speed of the target are updated as
follows:

v̂t+1
tgt = vttgt + âttgt∆t, (3)

x̂t+1
tgt = xttgt + v̂ttgt∆t, (4)

where âttgt denotes the acceleration derived by Eq.(1). How-
ever, the ego vehicle is assumed to move with the constant
speed until two seconds in the future, therefore, only the
position is updated.

As explained previously, the proposed method predicts
only the longitudinal position of the target vehicle. It is
assumed that the target is placed in the center of the current
lane. Moreover, prediction of a lane-changing trajectory is
out of scope of this paper. The method to predict lane-
changing trajectories is described in our previous stud-
ies [16], [17].

V. EVALUATION

A. Dataset

To evaluate the effectiveness of the proposed method, real
traffic data were used for analysis [19]. The traffic flow on a
highway in Germany was recorded by a drone. The data were
gathered at six locations, and the time series data for the sets
of 110 and 500 vehicles was included. The position, speed,
acceleration, size, and other parameters of each vehicle were
described. A 4K camera was implemented within the drone,
and the measurement accuracy was approximately 10 cm.
The measurement rate was 25 Hz. The highway at location 1
has two lanes per direction, and the other locations have three
lanes per direction. To validate the robustness of the proposed
method with respect to driving conditions, performance was
evaluated using the data of all locations. For the evaluation,
5,917 lane-keeping vehicles were considered excluding lane-
changing vehicles.



(a) (b)

Fig. 4. Examples of operation characteristic estimation using the proposed method: the green, red, and blue lines represent the three model parameters:
α, l, and m, respectively. The black line shows the reaction time. X axis indicates the time, and Y axis represents the estimated values of the operation
characteristic variables. Figure (a) shows the successfully estimated result. Figure (b) represents the unstable estimation result. We consider that the unstable
estimation can be caused by volatile driving of the ego vehicle. During the driving process, one vehicle can interrupt into the front space of the ego vehicle,
consequently, the ego and target vehicles may be forced to decrease the speed unexpectedly.

Fig. 5. Result of the trajectory prediction using the proposed method: the green vehicle depicts the ego vehicle, and the red one is the target vehicle. In
addition, the five red rectangles represent the predicted future positions obtained by the proposed method at the five prediction terms: 0.4 s, 0.8 s, 1.2 s,
1.6 s, and 2.0 s, respectively. The blue rectangles show the ground truth. It can be seen that the proposed method has high accuracy.

B. Criterion of the performance evaluation

As the evaluation criterion, the error between the ground
truth and the predicted position of the target was considered.
As the proposed method predicts the future positions until
two seconds with increments of 0.04 s, the root mean-squared
error (RMSE) of all predicted positions was considered as
the criterion. Let i be the index in the longitudinal direction,
and then, RMSE can be calculated as follows:

RMSE =

√
1

N
ΣN

i=1(xi − x̂i)2, (5)

where xi denotes the position at a time step i, and is used
as the ground truth. x̂i represents the predicted position
obtained using the proposed method. However, the error of
lateral positions was excluded from the evaluation scope. N
is the number of predicted positions. The future positions
are predicted until two seconds with increments of 0.04 s,
therefore, N was determined equal to 50.

C. Results of the operation characteristic estimation

Figure 4 (a) shows the result for a single case from the
entire evaluation dataset. X axis depicts the time, and Y axis
represents the estimated values of operation characteristic
variables. The green line indicates α, the red one is l, and

the blue line shows m. These parameters do not have units.
It is confirmed that stable values were estimated for all
parameters. In addition, the black line indicates the reaction
time (in seconds). In the figure, it can be seen that the
reaction time gradually increased, and reached a value close
to 2.1 s.

In contrast, Fig. 4 (b) shows the result for the case when
the unstable values were estimated. The configuration is to
that of provided in Fig. 4 (a). It is shown that the values
of the three model parameters were unstable during the first
three seconds. The reaction time was stable for the first 1.2 s;
however, it gradually became unstable between 3 s and 5 s.
We consider that unstable estimation was caused by volatile
driving of the ego vehicle. During the driving process, one
vehicle may interrupt into the front space of the ego vehicle,
consequently, the ego and target vehicles may be forced to
decrease the speed unexpectedly. The lane-changing event
may affect the operation process of the target driver, and it
may lead to the unstable operation characteristics.

D. Results of the trajectory prediction

Figure 5 shows an example of the predicted future po-
sitions of the target vehicle obtained using the proposed
method. The green vehicle indicates the ego vehicle, while



TABLE I
PREDICTION ERROR OF THE PROPOSED METHOD.

Prediction term Location 1 Location 2 Location 3 Location 4 Location 5 Location 6

0.4 s 0.027 m 0.023 m 0.025 m 0.025 m 0.031 m 0.028 m
0.8 s 0.043 m 0.040 m 0.038 m 0.043 m 0.052 m 0.049 m
1.2 s 0.066 m 0.065 m 0.058 m 0.067 m 0.083 m 0.077 m
1.6 s 0.109 m 0.109 m 0.092 m 0.107 m 0.136 m 0.119 m
2.0 s 0.182 m 0.176 m 0.144 m 0.165 m 0.219 m 0.181 m

Average 0.065 m 0.062 m 0.055 m 0.062 m 0.079 m 0.070 m

TABLE II
COMPARISON OF PREDICTION ERROR OF THE PROPOSED METHOD AGAINST THAT OF THE PREVIOUS METHODS.

Heyes [11] Ozaki [12] Aron [13]
Proposed

(constant reaction time)
Proposed

Average 0.139 m 0.189 m 0.183 m 0.065 m 0.065 m
Standard deviation 0.032 m 0.028 m 0.034 m 0.008 m 0.008 m

the red one is the target vehicle. In addition, the red rectan-
gles show the predicted future positions, and the blue ones
represent the ground truth. In this paper, the figure shows the
future positions at five prediction terms: 0.4 s, 0.8 s, 1.2 s,
1.6 s, and 2 s. Accuracy can be evaluated based on the error
between the ground truth and the predicted positions. From
this figure, it can be confirmed that the future positions of
the target vehicle were predicted accurately.

The errors at the five terms were calculated using the entire
dataset. Table I shows the evaluation results obtained using
the proposed method. First, it is confirmed that the accuracy
in the case of short term prediction was better than that of
long-term prediction. Second, it should be noted that for ∆ =
2 s, the error was less than 0.2 m. Therefore, the proposed
method showed appropriate performance regardless of the
location. This result confirms that our approach is able to
appropriately account for the change in driving conditions.
At all locations, the average errors observed were less than
0.08 m. As a result, it was demonstrated that the proposed
method is able to predict the future positions of the target
vehicle with high accuracy.

To evaluate the effectiveness of the proposed method, the
prediction accuracy was compared to that of the previous
methods that have constant values of the operation character-
istic variables as shown in Table II. In addition, performance
was compared against that one estimated for the case when
the proposed method was applied with the fixed reaction time
of 1 s to confirm whether the reaction time is considered in
the model correctly. Table III shows the determined values
of operation characteristic variables in the previous methods.
It is clearly evident that the proposed method with the
adjustment of operation characteristics is able to significantly
improve the prediction accuracy. Compared to the results
obtained using the previous methods, the proposed method
considerably reduced the errors in almost the half of the
number of errors within the previous method in [11]. The
average error of the proposed method was 0.065 m, while
that of [11] was 0.139 m.

TABLE III
PARAMETER SETTING IN THE PREVIOUS METHODS.

Variable Heyes [11] Ozaki [12] Aron [13]

α 0.8 1.1 2.45
l 1.2 1.0 0.676
m -0.8 0.9 0.655

∆T 1 s 1 s 1 s

Considering the results of the three previous methods, it
can be seen that performance is largely affected by the values
of the parameters. Among the previous methods, the values
of the operation characteristic variables in [11] showed the
best accuracy. Otherwise, the values in [12] showed the error,
which was increased almost 30% compared to that of [11].
Hence, the constant values cannot handle the variation of
individual characteristics, which may lead to a deterioration
of the performance. In contrast, the proposed method showed
the robust performance owing to the real time estimation of
the parameter values. The standard deviation was derived
from the changes of locations where the data were acquired.
The standard deviation of the proposed method was 0.008 m,
while that of the method proposed by [11] was 0.032 m.
Hence, the proposed method achieved the best accuracy as
compared to the previous methods. Based on this compari-
son, it was demonstrated that the real-time optimization of
the operation characteristic variables is significantly effective
in improving the robustness of the trajectory prediction with
respect to the change of locations.

However, the effectiveness of the reaction time estimation
was not evaluated as a comparison to the results of the
method to estimate only three model parameters with a
constant reaction time. RMSE of the proposed method was
approximately similar to that shown in Table II. Generally,
there is no need to accelerate or decelerate at a high rate,
while following the vehicle. Therefore, the influence of the
reaction time would be insignificant in terms of the trajectory



prediction. To confirm the validity of the approach used
to estimate the reaction time, different driving conditions
such as lane-changing events are considered. It is required
to consider the case when the ego vehicle movement is
interrupted by the lane-changing of other vehicles. In this
case, the ego vehicle may decelerate to avoid a collision
with the interrupting vehicle, and it may force the target
driver to react to the sudden event. We plan to confirm the
effectiveness of the reaction time estimation under various
driving conditions. This evaluation is to be a part of our
future studies.

To obtain better performance, there are three points to be
improved future studies. First, the proposed method defines
the moving window of the constant size for the operation
characteristic estimation and performs a moving average
within the window. In the evaluation, the size of the window
was set as 1 s. However, there were some cases of unstable
estimation results as shown in Fig. 4 (b). Generally, the
operation characteristics do not change in the short term.
Hence, if it is possible to eliminate unstable estimation,
performance of the proposed method should be considerably
improved.

The second point is to consider the change in the speed of
the ego vehicle. In the trajectory prediction, it was assumed
that the ego vehicle keeps the current speed until two seconds
in the future. However, it is obvious that the speed of the ego
vehicle is not constant, and the information can be acquired
using the CAN bus. As the position and speed of the ego
vehicle have the large influence on the prediction result, this
point should be addressed.

In addition, we expect that driving styles could be derived
from the operation variables. If it is possible to identify
such classes (e.g., cautious or reckless), it can significantly
contribute to develop the safety system. In our previous
work [20], the classification method of driving styles has
been proposed. However, this method is based on machine
learning techniques, therefore, the performance largely de-
pends on training data. To overcome the limitation, the
meaning of each operation variable should be defined.

VI. CONCLUSIONS

In this paper, we proposed a novel method to predict the
future positions of the following vehicle, until two seconds in
future, while estimating the operation characteristics of the
driver. The methods suggested previously have the limitation
of keeping the constant values of parameters related to
driving, though each driver has the different, individual op-
eration characteristics. As compared to previous approaches,
it was confirmed that the proposed method can considerably
improve the accuracy of the trajectory prediction by updating
the changes in the driving conditions. At all test locations,
the proposed method achieved a minimum prediction error
of 0.065 m compared to that of the optimal previous method,
which was 0.139 m. Moreover, the standard deviation of the
proposed method was 0.008 m, while that of the same op-
timal previous method was 0.032 m. Based on the observed

results, it was demonstrated that our approach ensures the
robustness of the trajectory prediction with high accuracy.

As future works, three points should be considered. The
first point is to eliminate the cases of unstable estimation,
and the second point is to consider the change in speed of
the ego vehicle. Moreover, we try to identify driving styles
based on the operation variables.
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