
Hypersolvers: Toward Fast Continuous-Depth Models

Michael Poli∗
KAIST, DiffEqML
poli_m@kaist.ac.kr

Stefano Massaroli∗
The University of Tokyo, DiffEqML
massaroli@robot.t.u-tokyo.ac.jp

Atsushi Yamashita
The University of Tokyo

yamashita@robot.t.u-tokyo.ac.jp

Hajime Asama
The University of Tokyo

asama@robot.t.u-tokyo.ac.jp

Jinkyoo Park
KAIST

jinkyoo.park@kaist.ac.kr

Abstract
The infinite–depth paradigm pioneered by Neural ODEs has launched a renais-
sance in the search for novel dynamical system–inspired deep learning primitives;
however, their utilization in problems of non–trivial size has often proved impossi-
ble due to poor computational scalability. This work paves the way for scalable
Neural ODEs with time–to–prediction comparable to traditional discrete networks.
We introduce hypersolvers, neural networks designed to solve ODEs with low
overhead and theoretical guarantees on accuracy. The synergistic combination
of hypersolvers and Neural ODEs allows for cheap inference and unlocks a
new frontier for practical application of continuous–depth models. Experimental
evaluations on standard benchmarks, such as sampling for continuous normalizing
flows, reveal consistent pareto efficiency over classical numerical methods.

1 Introduction

The framework of neural ordinary differential equations (Neural ODEs) (Chen et al., 2018)
has reinvigorated research in continuous deep learning (Zhang et al., 2014), offering new
system–theoretic perspectives on neural network architecture design (Greydanus et al., 2019;
Bai et al., 2019; Poli et al., 2019; Cranmer et al., 2020) and generative modeling (Grathwohl
et al., 2018; Yang et al., 2019). Despite the successes, Neural ODEs have been met with skep-
ticism, as these models are often slow in both training and inference due to heavy numeri-
cal solver overheads. These issues are further exacerbated by applications which require ex-
tremely accurate numerical solutions to the differential equations, such as physics–inspired neu-
ral networks (Raissi et al., 2019) and continuous normalizing flows (CNFs) (Chen et al., 2018).
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Figure 1: Hypersolvers for density estimation
via continuous normalizing flows: dopri5 infer-
ence accuracy is achieved with 100x speedup.

Common knowledge within the field is that these
models appear too slow in their current form
for meaningful large-scale or embedded applica-
tions. Several attempts have been made to either
directly or indirectly address some of these lim-
itations, such as redefining the forward pass as a
root finding problem (Bai et al., 2019), introduc-
ing ad hoc regularization terms (Finlay et al.,
2020; Massaroli et al., 2020a) and augment-
ing the state to reduce stiffness of the solutions
(Dupont et al., 2019; Massaroli et al., 2020b).
Unfortunately, these approaches either give up on the Neural ODE formulation altogether, do not re-
duce computation overhead sufficiently or introduce additional memory requirements. Although there
is no shortage of works utilizing Neural ODEs in forecasting or classification tasks (Yıldız et al., 2019;

∗Equal contribution. Author order was decided by flipping a coin.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Jia & Benson, 2019; Kidger et al., 2020), current state–of–the–art is limited to offline applications with
no constraints on inference time. In particular, high–potential application domains for Neural ODEs
such as control and prediction often deal with tight requirements on inference speed and computation
e.g robotics (Hester, 2013) that are not currently within reach. For example, a generic state–of–the–art
convolutional Neural ODE takes at least an order of magnitude2 longer to infer the label of a single
MNIST image. This inefficiency results in inference passes far too slow for real–time applications.

Method NFEs Local Error

p-th order solver O(pK) O(εp+1)
adaptive–step solver − O(ε̃p+1)
Euler hypersolver O(K) O(δε2)

p-th order hypersolver O(pK) O(δεp+1)

Figure 2: Asymptotic complexity comparison.
Number of function evaluations (NFEs) needed
to compute K solver’s steps. ε is the step size,
ε̃ is the max step size of adaptive solvers, δ �
1 is correlated to the hypersolver training
results.

Model–solver synergy The interplay between
Neural ODEs and numerical solvers has largely
been overlooked as research on model variants has
been predominant, often treating solver choice as a
simple hyper–parameter to be tuned based on em-
pirical observations. Here, we argue for the im-
portance of computational scalability outside of
specific Neural ODE architectural modifications,
and highlight the synergistic combination of model–
solver to be a likely candidate for unlocking the
full potential of continuous–depth models. Namely,
this work attempts to alleviate computational over-
heads by introducing the paradigm of Neural ODE

hypersolvers; these auxiliary neural networks are trained to solve the initial value problem (IVP)
emerging from the forward pass of continuous–depth models. Hypersolvers improve on the
computation–correctness trade–off provided by traditional numerical solvers, enabling fast and
arbitrarily accurate solutions during inference.

Pareto efficiency The trade–off between solution accuracy and computation is one of the oldest
and best–studied topics in the numerics literature (Butcher, 2016) and was mentioned in the seminal
work (Chen et al., 2018) as a feature of continuous models. Traditional approaches shift additional
compute resources into improved accuracy via higher–order adaptive–step methods (Prince & Dor-
mand, 1981). For the most part, the computation–accuracy pareto front determined by traditional
methods has been treated as optimal, allowing practitioners its traversal with different solver choices.
We provide theoretical and practical results in support of the pareto efficiency of hypersolvers,
measured with respect to both number of function evaluations (NFEs) as well as standard indicators
of algorithmic complexity. Fig. 2 provides a comparison of hypersolvers and traditional methods.

Inference speed By leveraging Hypersolved Neural ODEs, we obtain significant speedups on
common benchmarks for continuous–depth models. In image classification tasks, inference is sped
up by at least one order of magnitude. Additionally, the proposed approach is capable of solving
continuous normalizing flow (CNF) (Chen et al., 2018; Grathwohl et al., 2018) sampling in few
steps with little–to–no degradation of the sample quality as shown in Fig. 4.1. Moving beyond
computational advantages at inference time, the proposed framework is compatible with continual
learning (Parisi et al., 2019) or adversarial learning (Ganin et al., 2016) techniques where model and
hypersolver are co–designed and jointly optimized. Sec. 6 provides an overview of this peculiar
interplay.

2 Background: Continuous-Depth Models

We start by introducing necessary background on Neural ODE and numerical integration methods.

Neural ODEs We consider the following general Neural ODE formulation (Massaroli et al., 2020b)
ż = fθ(s)(s,x, z(s))

z(0) = hx(x)

ŷ(s) = hy(z(s))

s ∈ S (1)

with input x ∈ Rnx , output ŷ ∈ Rny , hidden state z ∈ Rnz and S is a compact subset of R. Here
fθ(s) is a neural network, parametrized by θ(s) in some functional space. We equip the Neural ODE

2Compared with an equivalent–performance ResNet.
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with input and output mappings hx : Rnx → Rnz , hy : Rnz → Rny which are kept linear as to avoid
a collapse of the dynamics into a non-necessary map as discussed in (Massaroli et al., 2020b).

Solving the ODE Without any loss of generality, let S := [0, S] (S ∈ R+). The inference of
Neural ODEs is carried out by solving the initial value problem (IVP) (1), i.e.

ŷ(S) = hy

(
hx(x) +

∫
S
fθ(τ)(τ,x, z(τ))dτ

)
Due to the nonlinearities of fθ(s), this solution cannot be defined in closed–form and, thus, a numerical
solution should be obtained by iterating some predetermined ODE solver. Let us divide S in K
equally–spaced intervals [sk, sk+1] such that for all k ∈ N<K sk+1 − sk = S/K := ε ∈ R+. The
numerical approximation of the IVP solution in S can be computed by iterating

zk+1 = zk + εψ(sk,x, zk)

z0 = hx(x)

ŷk = hy(zk)

k = 0, 1, . . . ,K − 1 (2)

where ψ is a function performing the state update.

Numerical methods ODE solvers differ in how this map ψ is constructed3. In example, the Euler
method is realized by setting ψ(x, sk, zk) := fθ(sk)(x, sk, zk). Note that, higher–order solvers
compute ψ(x, sk, zk) iteratively in p steps where p denotes the order of the solver. For example, in a
p-th order Runge-Kutta (RK) (Runge, 1895) method ψ is computed as

ri = fθ(sk)(sk + ciε,x, zk + z̃ik) i = 1, . . . , p

z̃ik = ε
∑p

j=1
aijrj i = 1, . . . , p

ψ =
∑p

j=1
bjrj

(3)

where a ∈ Rp×p, b ∈ Rp, c ∈ Rp fully characterize the method. Hence, the integration of a neural
ODE in S with a RK solver is O(pK) in memory efficiency and time complexity. On the other
hand, adaptive–step solvers, e.g. the popular Dormand–Prince 5(4) (dopri5) have no explicit upper
bounds in memory and time efficiency. This is especially critical as in many practical applications, a
requirement for maximum memory consumption and/or inference time must be satisfied.

Common metrics In classic numerical analysis, two type of metrics are often defined, i.e. the local
truncation error ek

ek := ‖z(sk+1)− z(sk)− εψ(sk,x, z(sk))‖2,
representing the error accumulated in a single step, and the global truncation error Ek is

Ek = ‖z(sk)− zk‖2,
i.e. the error accumulated in the first k steps. Note that for a p-th order solver ek = O(εp+1) and
Ek = O(εp) (Butcher, 2016).

3 Hypersolvers for Neural ODEs

Hypersolvers offers a computational framework for the interplay between Neural ODEs and their
numerical solver. The core idea behind hypersolvers is to introduce an additional neural network
gω to approximate the higher–order terms of a given solver, greatly increasing its accuracy while
preserving the computational and memory efficiency. The simplest instance of Hypersolved Neural
ODEs is based on Euler scheme:

zk+1 = zk + εfθ(sk)(sk,x, zk) + ε2gω(ε, sk,x, zk)

z0 = hx(x)

ŷk = hy(zk)

k = 0, 1, . . . ,K − 1 (4)

3Numerical solvers which obey to (2) are called explicit solvers
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where gωis a neural network approximating the second–order term of the Euler method. The derivation
of the Euler hypersolver comes naturally from the following. Let z(sk) be the true solution of (1) at
sk ∈ S and let ε > 0 such that sk + ε ∈ S . From the Taylor expansion of the solution around sk, i.e.

z(sk + ε) = z(sk) + εż(sk) +
1

2
ε2z̈(sk) +O(ε3)

≈ z(sk) + εfθ(sk,x, z(sk))

we deduce that the classic Euler scheme corresponds to the first–order truncation of the above.
The Euler hypersolver, instead, aims at approximating the second–order term, reducing the local
truncation error of the overall scheme, while avoiding to compute and store further evaluations of
fθ(s), as required by higher order schemes, e.g. RK methods.

3.1 General formulation

A general formulation of Hypersolved Neural ODEs can be obtained extending (2). If we assume
ψ to be the update step of a p-th order solver, then the general p-th order Hypersolved Neural ODE
is defined as

zk+1 = zk +

solver step︷ ︸︸ ︷
εψ(sk,x, zk) +εp+1

hypersolver net︷ ︸︸ ︷
gω(ε, sk,x, zk)

z0 = hx(x)

ŷk = hy(zk)

k = 0, 1, . . . ,K − 1 (5)

Software implementation We implemented hypersolver variants of common low–order explicit
ODE solvers, designed for compatibility with the TorchDyn (Poli et al., 2020) library4. The Appendix
further includes a PyTorch (Paszke et al., 2017) module implementation.

3.2 Training hypersolvers

Assume to have available the exact solution of the Neural ODE evaluated at the mesh points sk,
practically obtained through an adaptive–step solver set up with low tolerances. With these solution
checkpoints we construct the training set for the DE solver with tuples:

{(sk, z(sk))}k∈N≤K
According to the introduced metrics ek and Ek, we introduce two types of loss functions aimed at
improving each of the metrics.

Residual fitting We first start by defining the residual of the solver (2)

R(sk, z(sk), z(sk+1)) =
1

εp+1
[z(sk+1)− z(sk)− εψ(sk,x, z(sk))] (6)

which correspond to a scaled local truncation error without the neural correction term gω . Then, we
can consider a loss measuring the discrepancy between the residual terms and the output of gω:

` =
1

K

K−1∑
k=0

‖R(sk, z(sk), z(sk+1))− gθ(ε, sk,x, z(sk))‖2

If the hypersolver is trained to minimize `local, the following holds:
Theorem 1 (Hypersolver Local Truncation Error). If gω is a O(δ) approximator ofR, i.e.

∀k ∈ N≤K ‖R(sk, z(sk), z(sk+1)− gθ(ε, sk,x, z(sk))‖2 ≤ O(δ),

then, the local truncation error ek of the hypersolver is O(δεp+1).

The proof and further theoretical insights are reported in the Appendix.
4Supporting reproducibility code is at

https://github.com/DiffEqML/diffeqml-research/tree/master/hypersolver
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Trajectory fitting The second type of hypersolvers training aims at containing the global trun-
cation error by minimizing the difference between the exact and approximated solutions in the whole
depth domain S, i.e.

L =

K∑
k=1

‖z(sk)− zk‖2

It should be noted that trajectory and residual fitting can be combined into a single loss term,
depending on the application.

4 Experimental Evaluation

The evaluation protocol is designed to measure hypersolver pareto efficiency, inference time
speedups and generalizability across base solvers. We consider the following general benchmarks for
Neural ODEs: standard image classification (Dupont et al., 2019; Massaroli et al., 2020b) and density
estimation with continuous normalizing flows (CNFs) (Chen et al., 2018; Grathwohl et al., 2018).

4.1 Image Classification

We train standard convolutional Neural ODEs with input–layer augmentation (Massaroli et al., 2020b)
on MNIST and CIFAR10 datasets. Following this initial optimization step, 2–layer convolutional
Euler hypersolvers, HyperEuler, (4) are trained by residual fitting (6) on 10 epochs of the training
dataset with solution mesh length set to K = 10. As ground–truth labels, we utilize the solutions
obtained via dopri5 with absolute and relative tolerances set to 10−4 on the same data. The objective
of this first task is to show that hypersolvers retain their pareto efficiency when applied in high–
dimensional data regimes. Additional details on hyperparameter choice and architectures are provided
as supplementary material.

Pareto comparison We analyze pareto efficiency of hypersolvers with respect to both ODE
ODE solution accuracy and test task classification accuracy. It should be noted that residual fitting does
not require task supervision; indeed, test data could be used for hypersolver training. Nonetheless,
we decide to use only training data for residual fitting, in order to confirm hypersolver ability to
generalize to unseen initial conditions of the Neural ODE.

Multiply–accumulate operations i.e MACs are used as a general algorithmic complexity measure. We
opt for MACs instead of number of function evaluations (NFEs) of the Neural ODE vector field fθ
since the latter does not take into account computational overheads due to hypersolver network gω .
It should be noted that for these specific architectures, single evaluations of fθ and gω correspond to
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Figure 3: Test accuracy loss %–NFE and MAPE–GMAC Pareto fronts of different ODE solvers
on MNIST and CIFAR10 test sets. HyperEuler shows higher pareto efficiency for low function
evaluations (NFEs) even over higher–order methods.

0.04 GMACs and 0.02 GMACs, respectively. HyperEuler is able to generalize to different step sizes
not seen during training, which involved a 10 steps over an integration interval of 1s. Such residual
training scheme over 9 residuals corresponds to a computational complexity for HyperEuler of 0.54
GMACs, highlighted in blue in Fig. 3. As shown in the Figure, HyperEuler enjoys pareto optimality
over alternative fixed–step methods. The hypersolver is able to generalize to different step sizes
not seen during training, outperforming higher–order methods such as midpoint and RK4 at low
NFEs. As expected, even though higher–order methods eventually surpass HyperEuler at higher
NFEs as predicted by theoretical bounds, the hypersolver retains its pareto optimality over Euler.

Figure 4: Absolute time (ms) speedup of fixed–
step methods over dopri5 (MNIST test set).
HyperEuler solves the Neural ODE 8x faster than
dopri5 with the same accuracy.

Wall–clock speedups We measure wall–
clock solution time speedups of various fixed–
step methods over dopri5 for image classifica-
tion Neural ODEs. Here, absolute time refers
to average time across batches of the MNIST
test set required to solve the Neural ODE with
different numerical schemes.

Each method performs the minimum number
of steps to preserve total accuracy loss across
the test set to less than 0.1%. As shown in
Fig. 4, HyperEuler solves an MNIST Neu-
ral ODE roughly 8 times faster than dopri5
and with comparable accuracy, achieving signif-
icant speedups even over its base method Eu-
ler. Indeed, Euler requires a larger number of
steps due to its pareto inefficiency compared to
HyperEuler, leading to a slower overall solve.
The measurements presented are collected on a single V100 GPU.
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Figure 5: Butcher Tableau collecting co-
efficients of numerical methods see e.g
(3). [left] general case. [Right] tableau of
second–order α family. Note that α = 0.5
recovers the midpoint method.
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Figure 6: Neural ODE MAPE terminal
solution error of HyperMidpoint and var-
ious members of the α–family.

Generalization across base solvers We verify
hypersolver capability to generalize across different
base solvers of the same order. We consider the general
family of second–order explicit methods parametrized
by α (Süli & Mayers, 2003) as shown in Fig. 5. Employ-
ing a parametrizing family for second–order methods
instead of specific instances such as midpoint or Heun
allows for an analysis of gradual generalization perfor-
mance as α is tuned away from its value corresponding
to the chosen base solver. In particular we consider as
midpoint, recovered by α = 0.5, as the base solver for
the corresponding hypersolver.

Fig. 6 shows average terminal MAPE solution error
of MNIST Neural ODEs solved with both various α
methods as well as a single HyperMidpoint. As with
the previous experiments, the error is computed over
dopri5 solutions, and averaged across test data batches.
HyperMidpoint is then evaluated, without finetuning,
by swapping its base solver with other members of the α
family. The hypersolver generalizes to different base
solvers, preserving its pareto efficiency over the entire
α–family.

4.2 Lightweight Density Estimation

We consider sampling in the FFJORD (Grathwohl et al., 2018) variant of continuous normalizing flows
(Chen et al., 2018) as an additional task to showcase hypersolver performance. We train CNFs
closely following the setup of Grathwohl et al. (2018). Then, we optimize two–layer, second–order
Heun hypersolvers, HyperHeun, with K = 1 residuals obtained against dopri5 with absolute
tolerance 10−5 and relative tolerance 10−5. The striking result highlighted in Fig. 7 is that with
as little as two NFEs, Hypersolved CNFs provide samples that are as accurate as those obtained
through the much more computationally expensive dopri5.

dopri5 (80) HyperHeun (2) Heun (2) dopri5 (74) HyperHeun (2) Heun (2)

dopri5 (110) HyperHeun (6) Heun (6)

Figure 7: Reconstructed densities with continuous normalizing flows and Heun hypersolver
HyperHeun. The inference accuracy of dopri5 is reached through the hypersolver with a significant
speedup in terms of computation time and accuracy. Heun method fails to solve correctly the ODE
with same NFEs of HyperHeun.

5 Related Work

Neural network solvers There is a long line of research leveraging the universal approximation
capabilities of neural networks for solving differential equations. A recurrent theme of the existing
work (Lagaris et al., 1997, 1998; Li-ying et al., 2007; Li & Li, 2013; Mall & Chakraverty, 2013; Raissi
et al., 2018; Qin et al., 2019) is direct utilization of noiseless analytical solutions and evaluations in
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low dimensional settings. Application specific attempts (Xing & McCue, 2010; Breen et al., 2019;
Fang et al., 2020) provide empirical evidence in support of the earlier work, though the approximation
task is still cast as a gradient–matching regression problem on noiseless labels. Deep neural network
base solvers have also been used in the distributed parameters setting for PDEs (Han et al., 2018;
Magill et al., 2018; Weinan & Yu, 2018; Raissi, 2018; Piscopo et al., 2019; Both et al., 2019; Khoo &
Ying, 2019; Winovich et al., 2019; Raissi et al., 2019). Techniques to use neural networks for fast
simulation of physical systems have been explored in (Grzeszczuk et al., 1998; James & Fatahalian,
2003; Sanchez-Gonzalez et al., 2020). More recent advances involving symbolic regressions include
(Winovich et al., 2019; Regazzoni et al., 2019; Long et al., 2019).

The hypersolver approach is different in several key aspects. To the best knowledge of the authors, this
represents the first example where neural network solvers show both consistent and significant pareto
efficiency improvements over traditional solvers in high–dimensional settings. The performance
advantages are demonstrated in the absence of analytic solutions and are supported by theoretical
guarantees, ultimately yielding large inference speedups of practical relevance for Neural ODEs.

Multi–stage residual networks After seminal research (Sonoda & Murata, 2017; Lu et al., 2017;
Chang et al., 2017; Hauser & Ray, 2017; Chen et al., 2018) uncovered and strengthened the con-
nection bewteen ResNets and ODE discretizations, a variety of architecture and objective specific
adjustments have been made to the vanilla formulation. The above allow, for example, to accomodate
irregular observations in sequence data (Demeester, 2019) or inherit beneficial properties from the
corresponding numerical methods (Zhu et al., 2018). Although these approaches share some structural
similarities with the Hypersolved formulation (4), the objective is drastically different. Indeed, such
models are optimized for task–specific metrics without concern about preserving ODE properties, or
developing a synergistic connection between model and solver.

6 Discussion

Hypersolvers can be leveraged beyond the inference step of continuous–depth models. Here, we
provide avenues of further development of the framework.

Hypersolver overhead The source of the computational (and memory) overheads caused by the
use of hypersolver is indeed represented by the evaluation of gω at each solver step. Nonetheless,
this overhead (e.g. in terms of multiply–accumulate operations, MACs) decreases as the solver order
increases. In fact, in a pth order solver where fθ should be evaluated p times, gω is evaluated only
once. Let MACf , MACg be indicators of algorithmic complexity of fθ and gω, respectively. We have
that the relative overhead (in terms of MACs) Or is

Or =
pMACf + MACg

pMACf
= 1 +

1

p

MACg
MACf

and Or → 1 for p→∞ Thus, the experiments on pareto efficiency and wall–clock speedup using
HyperEuler showcased in Sec. 4.1 should be regarded as worst–case scenario, i.e. the most
expensive computational–wise.

Even in the worst-case scenario, hypersolvers remain pareto efficient over traditional methods

Beyond fixed–step explicit hypersolvers In this work, we focus on developing hypersolvers
as enhancements to fixed–step explicit methods for Neural ODEs. Although this approach is already
effective during inference, hypersolvers are not constrained to this setting. Indeed, the proposed
framework can be used to systematically blend learning models and numerical solvers beyond the
fixed–step, explicit case. In principle, we could employ hypersolvers into predictor–corrector
scheme where we may learn higher–order terms of either the (explicit) predictor or the (implicit)
corrector, effectively reducing the overall truncation error. Similarly, adaptive stepping might be
achieved by augmenting, in example, the Dormand–Prince (dopri5) scheme. dopri5 uses six
NFEs to calculate fourth- and fifth-order Runge–Kutta solutions and obtain the error estimate for
step adaptation. Here, we could substitute RK5 with an HyperRK4 and/or train a NN to perform the
adaptation given the error estimate.

8



Hypersolver are not limited to fixed–step explicit base solvers.

Accelerating Neural ODE training Speeding up continuous–depth model training with
hypersolvers involves additional challenges. In particular, it is necessary to ensure that the
hypersolver network remains a O(δ) approximator of residuals R across training iterations. A
theoretical toolkit to tackle such a task may be offered by continual learning (Parisi et al., 2019).

Consider the problem of approximating the solution of a Neural ODE at training iteration t+1 having
optimized the hypersolver on flows generated by the model fθt(s)(xt, s, z(s)) at the previous
training step t. This setting involves a certifiably smooth transition between tasks that is directly
controlled by the learning rate η, leading to the following result
Proposition 1 (Vector field training sensitivity). Let the model parameters θt be updated according
to the gradient-based optimizer step θt+1 = θt + ηΓ(∇θLt), η > 0 to minimize a loss function Lt
and let fθt be Lipsichitz w.r.t. θ. Then,

∀z ∈ Rnz , ‖∆fθt(s,x, z)‖2 ≤ ηLθ‖Γ(∇θL)‖2
being Lθ the Lipschitz constant.

By leveraging the above result, or pretraining the hypersolver on a sufficiently large collection of
dynamics, it might be possible to construct a training procedure for Neural ODEs which maximizes
hypersolver reuse across training iterations. Similar to other application areas such as language
processing (Howard & Ruder, 2018; Devlin et al., 2018), we envision pretraining techniques to play
a fundamental part in the search for easy–to–train continuous–depth models.

Maximizing hypersolver reuse represents an important objective for faster Neural ODE training.

Model–solver joint optimization Hypersolver and Neural ODE training can be carried out
jointly during optimization for the main task. Beyond numerical accuracy metrics, other task specific
losses can be considered for hypersolvers. In the standard setting, numerical solvers act as
adversaries preserving the ODE solution accuracy at the cost of expressivity. Taking this analogy
further, we propose adversarial optimization in the form minω maxθ

∑K
k=0 ‖zk − z̄k‖2 where z̄k is

the solution at mesh point k given by an adaptive step solver. When used either during hypersolver
pretraining or as a regularization term for the main task, the above gives rise to emerging behaviors
in the dynamics fθ(s) which exploit solver weaknesses. We observe, as briefly discussed in the
Appendix, that direct adversarial training teaches fθ(s) to leverage stiffness (Shampine, 2018) of the
differential equation to increase the hypersolver solution error.

Adversarial training may be used to enhance hypersolver resilience to challenging dynamics.

7 Conclusion

Computational overheads represent a great obstacle for the utilization of continuous–depth models
in large scale or real–time applications. This work develops the novel hypersolver framework,
designed to alleviate performance limitations by leveraging the key model–solver interplay of
continuous–depth architectures. Hypersolvers, neural networks trained to solve Neural ODEs
accurately and with low overhead, improve solution accuracy at a negligible computational cost,
ultimately improving pareto efficiency of traditional methods. Indeed, the synergistic combina-
tions of Hypersolvers and Neural ODEs enjoy large speedups during inference steps of standard
benchmarks of continuous–depth models, allowing in example accurate sampling from continuous
normalizing flows (CNFs) in as little as 2 number of function evaluations (NFEs). Finally, we discuss
how the hypesolver paradigm can be extended to enhance Neural ODE training through continual
learning, pretraining or joint optimization of model and hypersolver.
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Broader Impact

Major application areas for continuous deep learning architectures so far have been generative
modeling (Grathwohl et al., 2018) and forecasting, particularly in the context of patient medical data
(Jia & Benson, 2019). While these models have an intrinsic interpretability advantages over discrete
counterparts, it is important that future iterations preserve these properties in the search for greater
scalability. Early adoption of the hypersolver paradigm would speed up widespread utilization of
Neural ODEs in these domains, ultimately leading to positive impact in healthcare applications.

Accurate forecasting is at the foundation of system identification and control, two additional applica-
tion areas set to be greatly impacted by continuous models. Unfortunately, theoretical guarantees of
robustness in the worst–case scenario are challenging to construct for data–driven approaches. As
these approaches are refined, they are also likely to negatively impact the employment market by
accelerating job automation in critical areas.
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