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Abstract—The goal of this study is to propose an occlusion-
robust spherical camera localization method using 3D model of
the environment. Instead of using specific features, which may
cause low estimation accuracy in environment with occlusion,
the color information of all pixels in images is used for the
estimation. Camera pose is estimated by minimizing the color
difference of the taken image and the image generated using
former frame and 3D model. To reduce the influence caused by
occlusion, a robust evaluation function is used in the estimation
process. The effectiveness of the proposed method was confirmed
by experimental tests.

Index Terms—localization, spherical camera, 3D model of the
environment

I. INTRODUCTION

Recently, drones are more commonly used for various
purposes such as the inspection of infrastructures and factories.
Instead of people, drones can provide comparatively safer and
economical performance. During the inspection, it is necessary
to know the pose of the drone correctly. Although localization
methods using Global Positioning System (GPS) can work
efficiently outdoors [1], when it comes to indoor environments
such as factories, GPS has limitations because GPS signals
does not work indoors. Many studies are conducted on indoor
mobile robots localization using cameras. Cameras are widely
used recently because it is flexible and affordable, and is
able to provide various kind of information such as color
information and feature information.

In this study, 3D model of the environment is used to obtain
3D information in order to complete camera localization. In
some related research, depth cameras are used to get 3D
information. For example, [2] used an RGB-D camera for real-
time 6 DoF (3 DoF translation and 3 DoF rotation) localization
by using both depth images and color images. [3] used a
depth camera for localization, while using Random Sample
Consensus (RANSAC) and 3D point matching. However,
RGB-D cameras have a small field of view, so they obtain
less information. Cameras with a wider field of view are
more effective when used for localization purpose, because
the common field of view between images taken before and
after camera motion is important. When the rotation of the
mobile robot is extremely large, images captured by cameras
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with narrow vision can be totally different and the localization
will fail in this case. Since more information can be obtained
by using cameras with a wider field of view, the common field
of view between frames is larger. Thus, cameras with a wider
range of view are more effective for localization.

In this study, a spherical camera, which has 360 degree
field of view, and 3D model of the environment is used.
Such 3D model can be easily obtained in advance from the
construction CAD models of the environment, or by doing
a 3D scan using a Laser range finder. By using the spherical
image and depth information from the 3D model, virtual image
of a specific view point can be generated. By comparing the
virtual image and the image captured after camera motion,
the camera pose after the camera motion can be estimated. In
indoor environments with occlusion, non-visible region occurs
after the camera motion. To reduce the influence brought by
occluded regions, a method using the difference of the RGB
information of each pixel in the image obtained from the
spherical camera is proposed. Instead of using a specific point
or feature, using the difference of the RGB information of
all pixels in an image is expected to be more robust with
occlusion problem. Moreover, the weighting of the difference
of the RGB information is adjusted to reduce the influence of
occluded regions.

II. PROPOSED METHOD

A. Problem Setting

In this paper, a localization method using images obtained
from spherical camera and 3D model of the environment is
proposed. The initial pose of the camera is assumed to be
known. The image taken at the known pose is called key
image. Using the known pose, a depth map of the known pose
can be generated from the 3D model. Each pixel in the depth
map is in correspondence with the pixel in the key image.
The image taken by the next moment is set to be the target
image whose pose is wanted to be estimated. The motion of
the camera is assumed to be small, which means the difference
of the key image and the target image should be small.

B. Approach

The overview of the proposed method is shown in Fig. 1.
Let the image taken at moment τ be the key image, and the
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Fig. 1: Overview of proposed method

Fig. 2: Spherical camera projection model

image taken at moment τ+1 be the target image. The camera
pose of the key image is set to be known because the initial
camera pose is known. By using the pose of the key image and
the 3D model, a depth map corresponding to the key image
can be generated. The purpose of the proposed method is to
estimate the camera pose of the target image.

The smaller the color difference of two images, the more
similar these two images are, which also means that these
two images have high probability to be taken from the same
viewpoint. With the known 3D model and the color infor-
mation from the key image, a virtual image at any camera
pose can be generated. Thus, by generating a virtual image
of a specific viewpoint and minimizing the color difference
between the virtual image and the target image, the pose of
the target image can be estimated.

C. Generating Virtual Image of Specific Viewpoint

The projection surface of a spherical camera is a unit sphere
whose center is the optical center c of the camera. A spherical
image is an image formed on the spherical camera projection
surface, which contains unit vector pixels x̂ = [x, y, z]T . As
shown in Fig. 2, the color information of a 3D environment
point X = [X,Y, Z]T is projected to the unit sphere as a unit
vector [4].

The process of generating a virtual image of a specific
viewpoint is shown in Fig. 3. First, the key image is changed
into a spherical image. For example, the yellow pixel shown

Fig. 3: Generating virtual image of specific viewpoint

in the key image is converted to the corresponding position on
the unit sphere. Next, the pixel is converted to the 3D position
shown in green by changing the distance between the pixel
and the center of the unit sphere to the depth value, which is
known from the corresponding depth map. Then, this pixel is
rotated and translated by employing the rotation matrix R and
translation vector t, to the wanted position. Then, the pixel is
projected to the unit sphere, so that a new spherical image
after changing the camera viewpoint is generated. Finally,
the spherical image after transformation is changed into an
equirectangular image which is the wanted virtual image. A
color interpolation (bicubic interpolation) is done to fill the
missing pixels after the transformation.

The detail of changing the camera viewpoint of the spherical
image is shown in Fig. 4. The purpose is to use the key
image of a known viewpoint (camera viewpoint 1) and the
corresponding depth map to generate a virtual image of
camera viewpoint 2, which is an arbitrary viewpoint. First,
by changing the distance between each pixel and the optical
center into the depth obtained by using the depth map, a 3D
point cloud can be generated. Next, when the camera moves
from viewpoint 1 to viewpoint 2, the relative position between
all pixels in the 3D point cloud and viewpoint 2 can be
calculated. By normalizing the depth between all pixels and
viewpoint 2, a spherical image of viewpoint 2 is generated.

In this way, a virtual image of an arbitrary specific viewpoint
can be generated with an image and the corresponding depth
map.

D. Occlusion Problem

While generating a virtual image, a problem caused by
occlusion in the environment may occur.

As shown in Fig. 5, when the camera moves from viewpoint
1 to viewpoint 2, the occluded area that was not visible
from viewpoint 1 becomes visible from viewpoint 2. The
color information of the occluded area is not included in the
key image because it was occluded when the camera was at
viewpoint 1. Therefore, the color information of the occluded
area can not be correctly estimated when generating a virtual
image of viewpoint 2.



Fig. 4: Generating virtual image of specific viewpoint

Fig. 5: Occlusion problem

An example of occlusion problem during the virtual image
generation is shown in Fig. 6. The color of the area behind the
desk can not be correctly estimated because of the occlusion.

The occlusion problem affects the generated virtual image,
and also may cause error in the pose estimation process. The
weighting of the difference of the RGB information is adjusted
to lower the influence brought by occlusion, which is discussed
later in section II-F.

Fig. 6: Example of the occlusion problem

E. Camera Pose Estimation Using Color Difference Minimiza-
tion

The color information of all pixels in an image is used
for estimation. Values of R, G, B channels are all used. For
the ease of handling, the image matrix was converted to a
one-dimensional vector. The evaluation function is the color
difference between the virtual image and the target image
which is defined as follows:

R̂, t̂ = arg min
R,t

(P (a)), (1)

where a is the color difference defined as:
a = IV (R, t)− IT . (2)

Here, R is the rotation matrix and t is the translation vector.
R̂, t̂ are the estimated rotation and translation which makes
the color difference the smallest. IV (R, t) is the image vector
of the virtual image of a viewpoint which is converted by R, t.
IT is the image vector of the target image. P is the evaluation
function of the optimization.

With the estimated R̂, t̂ and the camera pose of the key
image, the camera pose of the target image can be calculated.

The evaluation function P used in the optimization is the
color difference of the virtual image and the target image
which is defined as follows:

P (a) =

n∑
i=1

1

2
a2i , (3)

where n is the number of components in the image vector. ai
is the i-th component of a.

In this study, the evaluation function is further modified for
better performance by changing the weighting of pixels in the
image vector. The weighting of each component of the image
vector is adjusted to reduce the error caused by the occlusion
problem. In this study, the Levenberg-Marquardt method is
used for the optimization [5].

F. Weighting of The Evaluation Function

Occlusion problem occurs when generating a virtual image
as shown in Figs. 5 and 6. The color information of the
occluded area in the image is not known in the key image.
Thus, when generating the virtual image, the color of the
occluded area can not be correctly estimated. When comparing
the virtual image and the target image, the color difference
of pixels in the occluded area tends to be higher. To reduce



Fig. 7: Evaluation function

Fig. 8: 3D model of a classroom

the influence of the occluded area, the evaluation function P
is changed into a Huber loss function [6]. The Huber loss
function is defined as follows:

Pi(ai) =

{
1
2a

2
i (|ai| ≤ δ)

δ(|ai| − 1
2δ) (otherwise)

, (4)

P (a) =

n∑
i=1

Pi(ai), (5)

where ai is the i-th component of a. n is the number of
components in the image vector. δ is the threshold. When the
error is too high in a region, the probability of occlusion is
high. Hence, an error higher than the threshold indicates the
presence of occlusion. In this study, the threshold is set to 40
due to the experiment. In different environment, the threshold
should be determined according to the amount of occlusion,
the lighting conditions, etc.

The evaluation function before and after modification are
both shown in Fig. 7. The blue line is the function before
changing the weighting (Eq. (3)), and the yellow line is the
Huber loss function (Eq. (5)). When the color difference is
higher than the threshold, a linear function is used.

III. EXPERIMENT AND RESULT

The proposed method was first tested in a simulation
environment, and then tested in a real environment.

A. Simulation Experiment

In the simulation experiment, Blender [7], an image render-
ing software, was used to generate images and depth maps.
A 3D model of a classroom is used (Fig. 8). An example of
the generated image and depth map is shown in Fig. 9. The

(a) Image (b) Depth map

Fig. 9: Image and depth map generated by Blender

Fig. 10: Simulation environment

ground truth of the camera pose is known, thus the result of
the proposed method is precisely evaluated.

In order to test the robustness of the proposed method
against occlusion, experiments were conducted in two different
environments. A classroom without desks and chairs and a
classroom with desks and chairs are used because desks and
chairs cause occlusion (Fig. 10).

Since a continuous localization method is considered, the
camera motion is set to be small. Here, the maximum trans-
lation between camera frames is set to ±0.25 m, and the
maximum rotation between camera frames is set to ±2.5
deg. Images taken from 50 randomly generated camera poses
within this range are used in the experiment.

For comparison, proposed method 1 is an experiment using
the evaluation function without considering occlusion (Eq. 3)
is also conducted. The proposed method 2 uses the evaluation
function considering occlusion (Eq. 5). As shown in Table I,
four groups of experiments are conducted.

In this experiment, there were some cases when the op-
timization ended with local minimum and poses were not
correctly estimated. Such cases are considered failed cases.
Data of failed cases is removed using the Interquartile Range
(IQR) method [8]. The average of the data without failed cases
and the standard error are shown in Figs. 11 and 12. The
success rate in each experiment is shown in Table II.

TABLE I: Groups of simulation experiment

Experiment Environment
Evaluation
function

(1) Proposed method 1
(without occlusion) Classroom without occlusion Eq. (3)

(2) Proposed method 2
(without occlusion) Classroom without occlusion Eq. (5)

(3) Proposed method 1
(with occlusion) Classroom with occlusion Eq. (3)

(4) Proposed method 2
(with occlusion) Classroom with occlusion Eq. (5)



Fig. 11: Translation error

Fig. 12: Rotation error

According to the results of group (1) and group (3) shown
in Figs. 11 and 12, it shows that when occlusion occurs
in the environment, both translation error and rotation error
increased. The success rate of the estimation also decreased
(Table II).

From the results of group (3) and group (4), it is clear that
the translation error and the rotation error were both reduced
by using the proposed method 2 even in an environment with
occlusion.

From the results of group (1) and group (2), it can be said
that the proposed method 2 also reduced the error and raised
the success rate of the estimation in an environment with little
occlusion.

TABLE II: Success rate of simulation experiments

Experiment Success rate [%]
(1) Proposed method 1 (without occlusion) 88.0
(2) Proposed method 2 (without occlusion) 100.0
(3) Proposed method 1 (with occlusion) 82.0
(4) Proposed method 2 (with occlusion) 90.0

TABLE III: Estimation error of real enviroment experiment

Translation error [mm] Rotation error [deg]
Average 10.1 0.4
Standard deviation 4.3 0.2

Fig. 13: Experiment environment

Fig. 14: 3D mesh

B. Real Environment Experiment

This experiment was conducted in a room with a scale of
17 m×9.5 m×3.8 m (Fig. 13).

First, a 3D model of the room was obtained before the
experiment. Structure from motion (SfM) method [9] was used
to do the 3D reconstruction of the room. An application called
PhotoScan was used to complete the 3D model. Nikon D750
was used to take images of the reconstruction. About 1000
images were taken to complete the 3D model of the room.
The generated 3D mesh is shown in Fig. 14. By using the 3D
mesh, a depth map was generated by Blender (Fig. 15).

A spherical camera (RICOH THETA V) was used to capture
images for the estimation. Images taken from 30 camera poses
were used. To obtain the ground truth of the camera pose,
motion capture (OptiTrack V120) was used. An ‘L’ shape
frame with markers was used.

In this experiment, no failed case occurred. The average
and the standard deviation of the estimation error of all data

Fig. 15: Depth map of real environment

TABLE IV: Maximum value of translation and rotation

Translation [mm] Rotation [deg]
Axis x y z x y z

Maximum value 164.4 295.6 14.6 5.0 1.6 3.2



Fig. 16: Pose of the ground truth and the estimated result

(a) Before optimization

(b) After optimization

Fig. 17: Color difference error image of the target image and
the generated virtual image

is shown in Table III. In the real environment experiment,
the maximum range of translation and rotation was not de-
termined. The maximum value of translation and rotation of
the 30 camera poses is shown in Table IV. The pose of the
ground truth and the estimated result is shown in Fig. 16. For
comparison, the different image of the target image and the
virtual image is shown in Fig. 17.

According to Table III, the translation and rotation error
is almost at the same level as the result of the simulation
experiment.

From the comparison of the target image and the generated
virtual image (Fig. 17), it is clear that the target image and
the virtual image matches after the optimization. Therefore, it
can be said that the estimation is correct.

From the result of this experiment, it is clarified that the
proposed method works efficiently in real environments.

IV. CONCLUSION

In this study, an occlusion-robust spherical camera lo-
calization method using 3D model of the environment is

proposed. The proposed method was tested in both simulation
environment and real environment. The estimation error of
the real environment experiment was at the same level as the
simulation experiment. Therefore, it is confirmed that camera
pose estimation is possible by the proposed method even in
an environment with occlusion.

Future work of this study will include: estimation of the
initial camera pose, continuous camera pose estimation by
regenerating depth map using 3D model, increasing the maxi-
mum rotation range. By working on future work listed above,
it can be expected that the proposed method will be applicable
in the future.
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