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Abstract—In the construction industry, construction machin- 

ery are an important factor in the overall productivity and 

efficiency of a worksite. Thus, emphasis is put on the monitoring 

of actions conducted by construction machinery. This was 

traditionally done manually by humans, which is a time- 

consuming and laborious task. Automatic action recognition of 

construction machinery is therefore needed. The field of action 

recognition is predominantly occupied by Deep Learning 

approaches and several previous works focused on adapting such 

approaches for construction machinery. However, the issue of 

obtaining training data is particularly troublesome for 

construction machinery. Our previous work proposed a Deep 

Learning method for learning an action recognition model from 

training data generated in a simulator using video filters but the 

precise contributions of the introduced video filter were unclear. 

The purpose of this study is therefore to clarify the effects of 

video filters for learning an action recognition model for 

construction machinery from simulated training data. 

I. INTRODUCTION 

The construction industry is known to suffer from poor 
efficiency compared to other industries such as manufactur- 
ing [1]. One key factor in improving the efficiency at con- 
struction sites is the monitoring of construction machinery, 
which occupy large portions of the overall budget [2]. Indeed, 
precise knowledge of the time and costs associated with each 
action conducted by each specific construction machinery is 
paramount in the establishment of an efficient construction 
plan [3].  

Action recognition of construction machinery was tradi- 
tionally conducted manually by site workers [4]. However, the 
need for automation have motivated several previous works. 
Those can be distinguished between approaches using onboard 
sensors and those using outboard sensors. Onboard sensors 
usually consist of encoders or GPS [5] and can provide reliable 
data for action recognition. However, they involve 
modifications on existing construction machinery. Outboard 
sensors consist of in cameras [6] or microphones [1] positioned 
throughout the construction site. Those allow direct use of 
preexisting construction machinery as well as monitoring of 
several construction machinery with a single sensor. 
Approaches using cameras have especially boomed, partly due 
to the success of Deep Learning-based approaches  
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Figure 1.   Overview of proposed method. 

 

Figure 2.   Simulator environment used in our proposed method. 

 

to human action recognition [7][8], and several Deep Learning-
based approaches for action recognition of construction  
machinery using cameras were proposed [9][10]. However, 
Deep Learning approaches require training data, which is 
troublesome to obtain for construction machinery. Our 
previous work [11] proposed a novel approach for learning a 
model from simulator-generated training data, much easier to 
obtain than training data from actual construction sites. The  
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Figure 3. Effects of applying a Grayscale filter: the color differences 
between (a) the data generated from a simulator and (b) from the real world 
have their color differences suppressed. 

 

learning problem was shifted to a common feature space 
domain by using video filters. However, the exact effects of 
video filters on the learning process were left unclear. 
Therefore, in this paper, the effects of video filters for learning 
an action recognition model for construction machinery from 
simulated training data are clarified. 

 

II. ACTION RECOGNITION OF CONSTRUCTION MACHINERY 

BASED ON SIMULATED TRAINING DATA 

A. Concept 

An action recognition model trained using training data 
generated in a simulator performs poorly on real world data due 
to the mismatch in feature space domain. Indeed, such training 
data would not be appropriate: the features contained in data 
generated in a simulator are not the same as those contained in 
real world data. This is most obvious by looking at them: the 
construction machinery in the simulator does not look similar 
to the one in real construction sites.  

In order to solve the mismatch in feature space domain, a 
third domain is introduced using video filters. By converting 
both the simulator generated training data and the real world 
data into the feature domain arbitrary defined by the selected 
filter, the learning problem can be contained in a feature 
domain where both data are represented.  

An overview of the method is shown in Fig. 1. Training is 
conducted using training data generated from a simulator after 
application of a video filter. Prior to testing, this same video 
filter is applied to the data collected at actual construction sites. 

B. Simulator-Generated Training Data 

A large amount of training data can be easily generated 
using a simulator. In this study, Vortex Studio [12], a real- time 
simulator for mechanical system operation, was used with a 
model of an excavator, as illustrated in Fig. 2.  

The input data to our learning model is RGB video data and 
to limit the effects of background, an environment with only 
soil around the excavator was created. Multiple camera 
viewpoints were also considered in the training data genera-  

Figure 4. Effects of applying an Edge filter: both (a) the data generated 
from a simulator and (b) from the real world have their texture differences 
suppressed. 

Figure 5. Effects of applying our filter: both (a) the data generated from a 
simulator and (b) from the real world have unnecessary edges removed. 

 

tion. During recording, the movements of the excavator were 
controlled by a human using a controller. 

 

C. Video Filters 

The videos segments generated from the simulator differ 
from real world video segments in several ways. First is about 
colors. Construction machinery and the background at 
construction sites come in a multitude of colors and are likely 
to differ from the selected ones in the simulator. Therefore, the 
first step consists in removing colors from video segments. 
This is simply done by the use of a Grayscale filter, shown in 
Fig. 3, which returns an image with pixel intensity values 
𝐼(𝑥, 𝑦), with (𝑥, 𝑦) being pixel coordinates. 

The second disparity is regarding textures. Surfaces in real 
world are not uniform, e.g., on construction machinery colors 
vary greatly in hue and contrast due to wear. Construction 
machinery in a simulator by opposition have unnaturally 
uniform surfaces. To suppress this difference, an Edge filter, 
shown in Fig. 4, is applied to preserve the contours of objects 
and remove any information regarding textures. This Edge 
filter, consisting of a Laplacian filter as in (1), is applied 
following the Grayscale filter. 

                          𝐿(𝑥, 𝑦) =  
𝜕2𝐼

𝜕𝑥2
+   

𝜕2𝐼

𝜕𝑦2
 . 

() 

 

However, the Edge filter can be expected to generate not 
only contours of objects necessary for action recognition but 
also unnecessary edges. Those additional edges would hinder 
the recognition task, creating additional differences between 
the simulator generated training data and the real world test 
data, and are therefore removed. This is conducted by 
thresholding with parameter 𝑇  as in (2) to obtain the final 

output of our filter 𝐿∗(𝑥, 𝑦) , shown in Fig. 5. 

  𝐿∗(𝑥, 𝑦) = {
        0 ,   if  𝐿(𝑥, 𝑦) ≥ 𝑇

255 ,   otherwise.
 

() 

 



  

Figure 6. Learning model used in our proposed method consisting of a CNN 
coupled with LSTM. 

Figure 7. Examples of excavator action classes: (a) Digging; (b) Piling; (c) 

Turning. 

 

D. Learning Model 

The used network framework is illustrated in Fig. 6. It is a 
Convolutional Neural Network (CNN) and Long Short Term 
Memory (LSTM). The CNN is made out of a convolutional 
middle layer and pooling layer. It serves to extract a feature 
map with spatial information. LSTM has been developed for 
time-series data and is suited for learning long-term time 
dependencies. This combination allows recognition of con- 
struction machinery considering both spatial and temporal 
information. 

The proposed network architecture is shown in Fig. 6. After 
extracting each RGB frame of a training data video, reduction 
to a size of 298×298×3 is conducted. This is the input to the 
CNN. The CNN used in this study was a pretrained Inception 
V3 [13]. The output from the CNN is then fed into the LSTM, 
consisting of 3 layers and classification is done by a softmax 
layer. 

  

Figure 8. Example of a video segment collected at an actual construction site 
in Motomiya, Fukushima, Japan. 

 

III. EXPERIMENTS 

We conducted experiments on action recognition for three 
actions classes, digging, piling, and turning, using an excavator, 
which is one of the most used construction machinery at 
construction sites [14]. Each action class is shown in Fig. 7.  

The training data required to train the excavator’s action 
recognition was generated from four viewpoints using Vortex 
Studio simulator and about 60 videos segments were generated 
for each action class. Each video segment has a resolution of 
1920×1080 and a frame rate of 30 fps. The average video 
duration is 7s, with the shortest being 4s and the longest being 
13s. Using this training data, CNN and LSTM networks were 
trained for 150 epochs using batch size 32 with Adam 
optimizer.  

As for the test data, three test datasets were created. The 
first test dataset was generated from the simulator to verify the 
accuracy of action recognition in the same domain. 20 video 
segments were generated for each action class. The second test 
dataset is a dataset collected using a remotely controlled scale 
model excavator, as initially reported in [11]. At that time, a 
background environment similar to the simulation 
environment was created. The second test dataset was also 
generated with 20 video segments for each action class. The 
third test dataset is a dataset collected at an actual construction 
site. We filmed a video of an excavator loading a dump truck 
at a construction site in Motomiya, Fukushima, Japan, and 
generated 30 video segments for each action class. All videos 
in those three test datasets had a resolution of 1920×1080 and 
a frame rate of 30 fps. Fig. 8 shows a sample of the data 
obtained at the construction site.  

 All filters used in this study were created using OpenCV 
[15] that is a highly optimized library with focus on real time 
applications. 

The threshold parameter T was manually set to 100. 



  

 

The following experiments were conducted: 

•  (A1) CNN+LSTM trained on simulator generated 

training data and tested on simulator generated test data. 

•  (B1) The Grayscale filter method trained on simulator 

generated training data and tested on simulator-generated test 
data. 

•    (C1) The Edge filter method trained on simulator-

generated training data and tested on simulator generated test 
data. 

•   (D1) The filter 𝐿∗(𝑥, 𝑦)  method trained on simulator-

generated training data and tested on simulator generated test 
data. 

•  (A2) CNN+LSTM trained on simulator generated 

training data and test data on remotely controlled scale model 
excavator. 

•  (B2) The Grayscale filter method trained on simulator 

generated training data and test data on remotely controlled 
scale model excavator. 

•    (C2) The Edge filter method trained on simulator- 

generated training data and test data on remotely controlled 
scale model excavator. 

•   (D2) The filter 𝐿∗(𝑥, 𝑦) method trained on simulator- 

generated training data and test data on remotely controlled 

scale model excavator.  

•  (A3) CNN+LSTM trained on simulator generated 

training data and test data on data from an actual construction 
site. 

•  (B3) The Grayscale filter method trained on simulator 

generated training data and test data on data from an actual 
construction site. 

 

 

 

•    (C3) The Edge filter method trained on simulator-

generated training data and test data on data from an actual 
construction site. 

•   (D3) The filter 𝐿∗(𝑥, 𝑦)  method trained on simulator-

generated training data and test data on data from an actual 
construction site. 

The calculation of accuracy was evaluated as the ratio of 

the number of correctly classified samples 𝑛correct  over the 

total number of samples in dataset 𝑁samples. 

 

accuracy =  
𝑛correct

𝑁samples

∗ 100. () 

 

IV. RESULTS AND DISCUSSIONS 

Results regarding action recognition performance are 
reported on Fig. 9. 

In (A1), (B1), (C1), and (D1), corresponding to cases where 
the training data and test data were both generated in the 
simulator, the accuracy of action recognition was 90.3%, 
92.7%, 91.9%, and 94.5%, respectively. From this result, it can 
be seen that action recognition is successful if the training and 
test data domain are matched. Furthermore, the application of 
video filters yielded better performance. This is explained by 
the fact that the considered filters simplify the input video and 
act in that sense to reduce the dimensionality of the learning 
problem. 

In (A2), (B2), (C2), and (D2), corresponding to cases where 
training was conducted with data from a simulator and testing 
was conducted with a remotely operated scale model excavator, 
the accuracy of action recognition was 32.8%, 46.7%, 41.6%, 
and 53.3%, respectively. It can be first noticed that all suffer 
drop in performance. The accuracy of (A2) before applying the 
video filter is similar to that of randomly classifying three 
classes, so it can be concluded that the action recognition has 
failed. 
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Figure 9. Average testing performance over 3 training runs of (A1) CNN+LSTM on simulator testing data, (B1) proposed Grayscale 

filter method on simulator testing data, (C1) proposed Edge filter method on simulator testing data, (D1) proposed filter 𝐿∗(𝑥, 𝑦) 

method on simulator testing data, (A2) CNN+LSTM on test data by remotely controlled scale model excavator and (B2) proposed 

Grayscale filter method on test data by remotely controlled scale model excavator, (C2) proposed Edge filter method on test data by 

remotely controlled scale model excavator, (D2) proposed filter 𝐿∗(𝑥, 𝑦) method on test data by remotely controlled scale model 

excavator, (A3) CNN+LSTM on test data by excavator and (B3) proposed Grayscale filter method on test data by excavator, (C3) 

proposed Edge filter method on test data by excavator, (D3) proposed filter 𝐿∗(𝑥, 𝑦) method on test data by excavator. 3 action classes 

were considered. Error bars correspond to one standard deviation. 



  

On the other hand, in (B2), (C2), and (D2), while still 
showing a performance drop, the introduction of video filters 
managed to significantly perform better than a random 
classifier. The filter 𝐿∗(𝑥, 𝑦)  showed the highest accuracy 
among the three video filters, allowing a performance gain of 
over 20%. This shows that this filter was successful in bringing 
the training data and test data onto closer domains. In addition, 
we think that the filter 𝐿∗(𝑥, 𝑦) showed the highest accuracy for 
action recognition because it minimized unnecessary features 
and extracted only the necessary ones. The second highest 
accuracy was the Grayscale filter. The Grayscale filter was able 
to eliminate the color difference between the simulator training 
data and the scale model test data but it could not show higher 
accuracy because the domains were still different and we think 
it still contained a lot of unnecessary information for action 
recognition. Among the three filters, the Edge filter, which has 
the lowest accuracy while having removed most of the 
unnecessary features, is considered to have low accuracy due 
to having extracted erroneous edges in the blank background. 

In (A3), (B3), (C3), and (D3), corresponding to cases where 
the training data was from a simulator and test data was from 
an actual construction site, the accuracy of action recognition 
was 36.7%, 36.6%, 31.1%, and 37.7%, respectively. For the 
test dataset created at the actual construction site, it can be seen 
that action recognition failed even after applying the video 
filters. Unlike the test dataset made using the remotely 
controlled scale model excavator, which had a background 
environment similar to the one in the simulation environment, 
this third test dataset contained various visual background 
noises, such as rocks falling and rising dust. It is thought that 
action recognition failed due to the influence of these noises. 
Reducing the susceptibility of our learning model to 
background variations could be considered by the addition of 
noise in the training data during training. 

V. CONCLUSION 

In our previous study, we proposed a method to perform 

action recognition of construction machinery using video 

filters from the training data generated by the simulator. In this 

study, in order to clarify the effect of the video filter, three 

video filters were used to determine which factors influence 

action recognition. We confirmed that the action recognition 

accuracy of the method with the filter 𝐿∗(𝑥, 𝑦) applied was 20% 

or more higher than the method without the video filter, and 

as a result, it was confirmed that for action recognition in 

different domains, is important to select filters that returns 

similar features while reducing the amount of unnecessary 

ones. 

However, we obtained low accuracy for action recognition 

in our experiment with test dataset obtained at the actual 

construction site. This is thought to be caused by background 

variations, since the training data generated in the simulation 

excluded such noise from the background as much as possible. 

Therefore, in the future, we plan improve performance by 

generating training data with various noises in the background 

in the simulation environment in addition to pursuing the 

elaboration of a more suitable filter for action recognition. 
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