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Abstract—In this work, a method to estimate accurate 6
degrees of freedom acoustic camera pose is proposed. Acoustic
cameras, also known as 2D forward-looking sonar can generate
high resolution 2D images in all water bodies. However, due
to the unique imaging principle, techniques such as vision-based
localization with acoustic images are still at the early stage. Even
we have full 3D information of the scene, it is still difficult to
localize the sensor. In this work, we deal with the problem of
estimating the accurate relative pose between the camera and
a 3D known target which can be applied to tasks like extrinsic
calibration. Previous works mainly estimate the camera pose with
planar targets; however, the methods are not robust to noise
in the image. We propose an accurate pose estimation method
with the help of an acoustic image simulator which can deal
with 3D targets. We use edge features to match the real images
and the synthetic images. A coarse-to-fine strategy is used for
global localization and pose refinement. Experiments prove the
effectiveness of the method.

Index Terms—forward looking sonar, acoustic camera, simu-
lation, localization, extrinsic calibration

I. INTRODUCTION

Acoustic cameras also known as 2D forward looking sonars
can generate high resolution 2D images even in turbid water
[1]. They are gradually mounted on remotely operated ve-
hicles (ROVs) and autonomous underwater vehicles (AUVs)
because of their high performances and compact sizes. They
have been already applied to tasks such as 3D mapping and
robot navigation [2]–[4]. However, due to the unique imaging
principle, there are still many open problems to be solved. It
is hard to estimate six degree-of-freedom (6DoF) pose even
in a known scene which is important for robot navigation.
In order to localize the sensor, techniques such as ultra-short
baseline (USBL) perform poorly in shallow water and closed
water tanks. Other methods such as combination of doppler
velocity log (DVL) and inertial measurement unit (IMU)
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Fig. 1. Pose estimation by matching real and synthetic images. (a) Experi-
mental environment. (b) Real acoustic image. (c) Closest synthetic acoustic
image. The accurate pose of the acoustic camera can be estimated by the
registration of real and synthetic acoustic images.

are limited by drift problems. Although the aforementioned
methods can acquire the movement of the sensor, it is still
necessary to find the relative pose between the camera and
the scene which is also known as extrinsic calibration. This
is extremely important for tasks such as dataset collection
and underwater monitoring. Currently, the poses are usually
manually measured by divers by tools like rulers. However,
since the lens-based acoustic camera imaging principle is
complex, it is difficult to locate sensor origin.

Previous methods used co-planar points to estimate the
extrinsic parameters of the acoustic camera [5], [6]. However,
such methods are not robust to noise in the acoustic images.
For example, dislocation and ghosting may exist due to multi-
path reflection and other ultrasound phenomenon. For many
cases, it is even hard to find the 2D-2D correspondence
manually. With inaccurate positions of feature points, for z-
axis in local acoustic camera coordinate, there will be a
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Fig. 2. Projection model. A 3D point (r, θ, ϕ) is projected to (r, θ) in polar
coordinate.

decimeter level error for the localization task in the water
tank [6], [7]. To better locate the camera, the detection of
the illuminated area [7], [8] is usually necessary. However, it
is difficult to extract the area when there are objects at the
boundaries.

In this paper, a method to estimate accurate extrinsic pa-
rameters based on known 3D targets is proposed. As shown
in Fig. 1, by finding the closest synthetic acoustic image in the
database, it is possible to locate the camera. The initial pose
can be firstly estimated online by querying a pre-generated
large synthetic image database. Then, the result is refined
by generating a local database offline around the estimated
initial pose. In this work, we use edge features to mitigate the
domain gap between the real and synthetic images. We find
the most similar synthetic image compared to the real image.
The viewpoint of the synthetic image is considered to be the
optimized camera pose. Experiments prove the feasibility of
the method.

The rest of the paper is organized as follows. In Section
II, preliminaries such as sonar projection model and image
simulation are introduced. Section III explains the proposed
method. Experiments and evaluations are presented in Section
IV. Finally, conclusions and future works are presented in
Section V.

II. PRELIMINARIES

A. Projection Model

A 3D point is usually represented by polar coordinate as
(r, θ, ϕ) in sonar coordinate. As a multiple beam sonar, it
emits N fan-shaped beams along azimuth angle direction and
records the backscattered intensity and time of flight. During
image generation, the elevation angle ϕ is missing so that the
2D pixel is represented as (r, θ). The scope of the elevation
angle is [ϕmin, ϕmax]. Enlarging |ϕmax − ϕmin| may generate
more optical-like image. On the other hand, if |ϕmax − ϕmin|
is close to zero, it is similar to a profiling sonar. For ARIS
EXPLORER 3000, the scope of elevation angle is around 14◦

and the image in Fig. 1(b) is an example.

B. Simulator

In our previous works, we built a sonar simulator in
Blender1. By setting the attenuation of the ray strength based
on the inverse square law and assuming the reflection model as
Lambertian, it is possible to generate an image of backscat-
tered intensity If using perspective camera model with the
same aperture angle as acoustic camera based on ray tracing.
Denoting the corresponding depth image as Df , an acoustic
image Ia can be formed from If and Df by projecting the
information to ϕ = 0 plane in camera coordinate [9], [10]. The
intensities of the 3D points with the same (r, θ) are linearly
integrated here.

III. APPROACHES

A. Simulator-aided Pose Estimation

We estimate the 6DoF pose with the help of the acoustic
image simulator. The basic idea is to find the virtual viewpoint
in the simulator closest to the viewpoint in the real world for
pose estimation. The acoustic image simulator is developed to
generate the synthetic image Is from camera pose w and 3D
model M. The process can be described as

Is = g(w,M). (1)

Here g(.) refers to the image simulation process. Since
range information can be directly detected from the sensor,
scale problem does not exist in the acoustic camera. Theoret-
ically, if the relative pose between the target and the camera
is the same in real and virtual space, regardless of the domain
gap, the same images can be captured in real world and the
simulator. It is worth mentioning that the parameters between
the virtual camera and the real one have to be the same, such as
rmin, rmax and the resolution in range direction. If we define
the real image as Ir and the metrics to measure the difference
between two images as d(.), the optimization process can be
written as follows.

w̃ = argmin
w

d(Ir, Is). (2)

In practical situation, the real images Ir and the synthetic
images Is may have a large domain gap. In this paper, we
assume the geometry information in Ir and Is is consistent.
We use edge information to measure the difference between
image in different domains. Another problem is the search
space. Searching 6DoF pose in meter-level space require large
computational cost. To improve the performance, a coarse-to-
fine strategy is used.

Figure 3 shows the optimization process of acquiring the
pose of the real image. First, due to the heavy noise in real
acoustic image, we use BM3D [11] to eliminate the noise in
the acoustic image. Then, Canny edge detector is used to find
the edge of the objects in the scene. In order to find the proper
pose, we first generate a large number of synthetic images
with corresponding poses all around the target in the acoustic
simulator. We compute the difference of Is and Ir in edge

1https://github.com/sollynoay/Sonar-simulator-blender
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Fig. 3. Overview of the proposed method. A global database is generated beforehand containing virtual images from a large variety of viewpoints. The edge
image captured from the real acoustic camera is used to search for the closest edge image in the database. A rough estimation of pose can be acquired from
the process. For calibration tasks, a more accurate pose is necessary. We generate a local database with poses around the initial pose and repeat the searching
process again for the final result.

domain. The position of edge points in the image are denoted
as {(x, y)|(x, y) ∈ S}. Then, we use Chamfer distance to
measure the difference between the two images in edge space
as follows.

d(I1, I2) =
1

|S1|
∑
x∈S1

min
y∈S2

||x−y||22+
1

|S2|
∑
y∈S2

min
x∈S1

||x−y||22.

(3)
By looking for the minimum distance, it is possible to acquire
an initial pose ŵ. To acquire a more accurate result, we search
for a smaller space with finer steps around the initial pose and
repeat the aforementioned process. Finally we can acquire the
optimized pose w̃ and Ĩs.

B. Coarse-to-fine Strategy

In this work, we assume we have a prior knowledge of the
camera pose. The camera is mounted on a moving device and
the moving range is limited to a certain scope. The orientation
of the camera is controlled by a rotator and towards the ground.
Such problem setting can narrow the search space at the
beginning. However, in a large-scale water tank environment,
the search space is still quite large. The pre-generated synthetic
image database cannot cover the whole search space which
can only offer a rough estimation. After acquiring an initial
pose ŵ, we then carry out a local optimization in a small
but finer search space. In the simulator, we generate random
acoustic images from the following method. Random poses
are generated around the initial pose as follows.

w = ŵ + ϵ, ϵk ∼ U(−βk, βk), (4)

where ϵk and βk are the k-th element in vector ϵ and β, and U
refers to a uniform distribution. By implementing simulator-

aided pose estimation in local space, an accurate pose can be
acquired. In this work, we denote pose w as follows.

w = [x, y, z, φx, φy, φz]
⊤, (5)

where x, y, x refers to the position in world coordinate and
φx, φy, φz refers to z − y − x Euler angles.

IV. EXPERIMENTS

We carried out experiments in a water tank. For global
localization, we generated a database with 21,870 images.
We searched the camera poses in a 1.8 m×1.8 m×0.4 m
space with a variety of orientations at each position. For local
refinement, we set β = (0.05, 0.05, 0.2, 0.017, 0.044, 0.017).
The uncertainty in z-axis is relatively larger empirically. We
generated a database of 10,000 images as the refinement
database each time. Examples of the results are shown in
Fig. 4. The images for each column represents real images
after BM3D, initial synthetic images, final synthetic image,
the edge maps of real images, the edge maps of final synthetic
images, and the overlap representation of the edge maps of
real images (red) and the edge maps of final synthetic images
(green), respectively. We successfully found viewpoints close
to the real experiment in simulation environment. Although
there are ghosting and dislocation effects in real acoustic
images, the algorithm can still find the proper solution. The
camera pose in global coordinate is shown in Table I.

It was measured by ruler that the z value is around 2 m,
and φx was close to zero, φy was around 0.87 rad, and φz

was around 1.57 rad. The estimated results satisfied our prior
information. For further evaluation, we evaluate the chamfer
distance (CD) and the reprojection error (RE) of the red points
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Fig. 4. Experiment results. (a) and (g) show the real images after denoising.
(b) and (h) are the optimal synthetic images initial estimation. (c) and (i) are
the optimal synthetic images after refinement. (d) and (i) indicate edge images
from (a) and (g). (e) and (k) are the edge images from (c) and (i). We overlay
(d) (e) and (j) (k) using red and green colors.

TABLE I

x [m] y [m] z [m] φx [rad] φy [rad] φz [rad]
Image 1 -1.54 0.15 2.01 0.02 0.88 1.48
Image 2 -1.18 0.36 2.04 0.01 0.87 1.57

in Fig. 4 before and after refinement between the real and
synthetic images. The calculation of reprojection error of each
points is as follows.

error = |∆r| × sin(|∆θ|), (6)

where ∆r and ∆θ are the difference of (r, θ) in two images.
Results are shown in Table II. Both CD and RE are the smaller
the better. It is clear that the error are smaller after local search.

We used a PC with Intel(R) Core(TM) i9-10900K CPU
@ 3.70GHz and an NVIDIA GeForce RTX 3090 GPU. For

TABLE II

CD initial CD final RE initial RE final
Image 1 9.22 6.33 0.865 0.175
Image 2 7.31 7.14 3.072 0.076

each acoustic image simulation, it took around 4 seconds per
virtual image. In other words, it may took 11 hours to build
a refinement database. Our purpose is to find the accurate
solution as extrinsic calibration. If a rough estimation is
enough, it is not necessary for the time-consuming refinement
process. Other process, such as BM3D may took 3 seconds
for a 128×1343 image on CPU. Computing edges for 10,000
images took 28 seconds. Searching for the virtual image with
minimum chamfer distance took 7 minutes. There was much
space left to be improved. In the future, we are going to
optimize the whole process for more flexible situation, such
as real-time localization.

V. CONCLUSIONS

We proposed a method to estimate the 6DoF pose of
acoustic camera based on a known target. With the help of
the acoustic image simulator, it is possible to find the accurate
pose. Future work may include realizing real-time performance
and achieving more accurate results considering sonar artifacts
such as multi-path reflection.
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