
All Aware Robot Navigation in Human Environments
Using Deep Reinforcement Learning

Xiaojun Lu1, Angela Faragasso1, Atsushi Yamashita2, and Hajime Asama1

Abstract— Mobile robots functioning in human environments
should behave with a secure and socially-compliant manner.
Although many studies have revealed the effectiveness of Deep
Reinforcement Learning (DRL) in robot navigation, most of
them can only handle the presence of human as independent
individuals. Failing to consider groups may lead to the robot
getting stuck or behaving rudely, and omitting to separately
handle obstacles from pedestrians will cause low efficiency.
In this work, we present a novel all-aware neural network
that utilizes DRL to process groups, obstacles, and individuals
simultaneously. The proposed solution employs a new Group–
Robot Interaction (GRI) subnetwork to encode the mutual
effects between groups and the robot, and a modified Obstacle–
Robot Unilateral interaction (ORU) subnetwork is presented to
avoid obstacle collisions caused by sensing noises or motion un-
certainties. In addition, the influences of a pedestrian, obstacle,
and group on other pedestrians or groups, that indirectly affect
the robot, are also integrated into the Human–Robot Interaction
(HRI) subnetwork or GRI subnetwork respectively by using
map tensors. Finally, the GRI, ORU, and HRI subnetworks are
aggregated into a planning subnetwork to train and derive an
all-aware robot navigation policy based on DRL. Evaluation
results in both real-world and simulation experiments show
that the proposed approach outperforms the current cutting-
edge methods.

I. INTRODUCTION

The application of mobile robots in human environments
is rising with AI advancement [1]. Traditional methods for
robot navigation usually consider humans to be obstacles,
simply concentrating on the next action step, which result in
shortsighted behaviors [2]. To achieve long-term navigation,
researchers attempted to predict human trajectories before
planning [3]. However, the separation of prediction and
planning causes the “freezing robot problem”. To address this
challenge, several studies proposed cooperative navigation
policies that take into account all agents jointly [4]. Nev-
ertheless, these methods suffer from high computation costs
and are hard to work in real time. To overcome this problem,
recent studies have explored Deep Reinforcement Learning
(DRL) for robot navigation, where a value network is trained
to select action commands. Although significant progress has
been achieved in DRL-based methods [5]–[8], pedestrians
are only considered as independent individuals. However, up
to 70% of pedestrians tend to walk in groups among commer-
cial environments [9], [10]. Failing to consider groups may
lead to the robot getting stuck, such as not knowing how to
overtake or follow a group, and even intruding into groups

1Department of Precision Engineering, The University of Tokyo, Tokyo,
Japan, ({luxiaojun, faragasso, asama}@robot.t.u-tokyo.ac.jp).

2Department of Human and Engineered Environmental Studies, The
University of Tokyo, Chiba, Japan, (yamashita@robot.t.u-tokyo.ac.jp).

(a) Method overview

HRI subnetwork

ORU subnetwork

��

��

planning
subnetwork

GRI subnetwork

��

St

Pt

Ot

Gt

St

Ot

St

Ot

Gt

Pt
St

vt

(b) All-aware network structure
Fig. 1. All-aware robot navigation method by jointly modeling GRI,
ORU, and HRI. (a) The robot can successfully reach its goal by navigating
in a socially-compliant manner, while avoiding intruding into groups and
colliding with agents. The dashed and solid lines respectively indicate
indirect and direct effects of agents on the robot. The bidirectional arrow
represents the interaction; and the unidirectional arrow refers to the unilateral
interaction, which denotes the one-way effect of an obstacle. (b) Proposed
network containing the GRI, ORU, and HRI subnetworks: all agents aware
robot navigation policy is learned through encoding both interactions and
unilateral interactions between the robot and each agent.

which is not socially compliant. Another weakness of DRL-
based methods [11]–[13] is they only model Human–Robot
Interaction (HRI) and Human–Human Interaction (HHI),
while ignoring obstacles’ unilateral interactions. The unilat-
eral interaction denotes the one-way effect of an obstacle on
other agents, such as Obstacle–Robot Unilateral interaction
(ORU) and Obstacle–Human Unilateral interaction (OHU).
Omitting to separately consider unilateral interactions will
cause low efficiency, as obstacles are different from humans
in terms of unresponsiveness and lack of social norms.

In this work, we address above problems by considering
individuals, obstacles, and groups simultaneously as shown
in Fig. 1. First, we propose a novel Group–Robot Interaction
(GRI) subnetwork to extract and aggregate the features of
mutual effects between each group and the robot. Map ten-
sors are calculated to encode indirect effects of other agents
that influence the robot through this group. These tensors and
the states of the group and the robot are then input to the
GRI subnetwork to extract the features of GRIs. Second, we
modify our prior ORU subnetwork [14] to avoid obstacle col-
lisions arising from sensing noises or motion uncertainties by
considering observation disturbances and safety redundancy.
Third, we add Group–Human Interactions (GHIs) into the
HRI subnetwork [14] to encode the indirect effects of an
group on the robot through this human. Finally, the outputs
of the three subnetworks, representing the expected features
of HRIs, ORUs, and GRIs, are aggregated into a planning
subnetwork to learn an all-aware navigation policy based on
DRL. A new reward function is also designed to restrain the
robot from approaching obstacles too close and intruding

into groups. Evaluations of both simulation and real-world
experiments validate that the proposed method can enable
the robot to follow or overtake a group appropriately, while
avoiding collisions with agents and intruding into groups,
outperforming the state-of-the-art methods.

II. BACKGROUND
A. Related Works

Numerous traditional approaches have been presented to
improve the robot’s social-awareness in navigation. One
of the widely-used approaches is social forces model
(SFM) [15], [16], which has proven to be effective. Other
methods, such as optimal reciprocal collision avoidance [2]
and reciprocal velocity obstacles [17], seek to identify mu-
tually safe velocities. Despite their utility, these approaches
need laborious parameter selection and has poor generality.
In recent years, DRL has been intensively studied and applied
to various fields [18]. Furthermore, DRL based algorithms
have also been widely used to enable the robot to learn
control policies through trial and error while interacting with
the environment. Some recent studies have utilized DRL to
develop navigation methods by directly using raw sensor data
as input [5]. However, one challenge of these works is to
model crowds with variable sizes [19]. To solve this problem,
Everett et al. [20] used an LSTM module to transform the
states of a crowd with varying sizes into a fixed-length vector.
Based on pedestrians’ proximities to the robot, this module
processes the state of each pedestrian in descending order.
However, prioritizing importance based on their distance
from the robot is not reasonable. To overcome this challenge,
attention-based DRL approaches have been proposed [11]–
[13], which utilize an attention mechanism to assign varying
degrees of importance to each pedestrian.

One shortcoming of above DRL based methods is obsta-
cles are not separately considered from pedestrians, which
leads to inefficiency [11]. To solve this issue, Liu et al. [7]
integrated an occupancy grid map of obstacles into DRL.
However, the map needs to be pre-built for each scenario,
which results in low generality. In prior work [14], we
attempted to encode obstacles and pedestrians using ORU
and HRI subnetworks. However, we did not model motion
uncertainties and sensing noises, which causes risky behav-
iors when the robot passes obstacles. Moreover, the method’s
applicability remains to be verified, as only simulations were
conducted. In this work, we improve the ORU subnetwork by
including observation disturbances during learning to simu-
late sensing noises in reality, and adding a closeness penalty
term to the reward function to provide safety redundancy.

Another shortage of current DRL based methods is that
pedestrians are simply treated as independent individuals.
There is only one work that learns a Group-Aware robot
navigation Policy (GAP) [21]. However, GAP only considers
dynamic groups, simply modeling them as polygons without
any group states, and merely trains the robot to avoid
intruding into groups, which has not learned the interactions
between the group and other agents (e.g., how to overtake
or follow a group). Additionally, the agents’ states are

assumed to be known in simulation and provided by a motion
capture system in real-world tests. Moreover, their training
is conducted in a “circle crossing scenario” [8], where all
agents move simultaneously towards a central point, which
is impractical. In contrast, the new method proposed here has
modeled the interactions between groups and other agents.
We obtain all states from first-robot-view with sensors in-
stalled on the robot. Furthermore, we assign agents’ start
and goal positions randomly, making our approach more
applicable. To the best of our knowledge, this is the first
work that incorporates interaction and unilateral interaction
between the robot, pedestrian, obstacle, and group for robot
navigation based on DRL.

B. Problem Formulation

1) Preliminaries: The navigation task we study involves
a robot moving to its goal in a complex setting with I
pedestrians (including group members), K obstacles, and M
groups, which are uniformly referred to as agents. Based on
DRL framework, this task could be expressed as a sequential
decision-making problem [5]. In our work, the agents’ states
are obtained through the sensors installed on the robot and
represented in the robot-centric coordinates, with the x-axis
originating at the robot’s current position and extending
towards its goal. Denote robot’s position as pt = [0, 0],
orientation as θt, velocity as vt = [vx, vy], radius as r,
preferred speed as vpref , and goal position as dtgl. The robot’s
state can be defined as St=[pt, θt,vt, r, vpref , d

t
gl].

Two basic types of obstacles, rectangular and circular,
are considered. The obstacle’s state is denoted as Ok =
[pk, θk, wk, lk] or [pk, rk], where pk = [pkx, p

k
y] represents

the position; θk denotes the orientation; wk and lk are the
width and length, respectively; and rk signifies the radius.
For complex obstacles, such as L-shaped or U-shaped, they
can be decomposed into combinations of basic types.

Each pedestrian has a similar state as the robot, however,
the goal position and preferred speed are unobservable.
Additionally, each pedestrian has a group ID, denoted as
git ∈ {0,1,...,m,...,M}, where 0 represents the pedestrian is
an individual and m implies it belongs to the m-th group.
We define the pedestrian’s state as P i

t =[pi
t, θ

i
t,v

i
t, r

i, git].
2) Deep Reinforcement Learning for Robot Navigation:

The joint states of (1+K+I+M) agents are denoted as
Jt = [St,...,O

k,...,P i
t ,...,G

m
t ,...], where Gm

t is the group’s
state that will be discussed in III-A. Assuming the vt can
be changed instantly by the robot in accordance with the
navigation policy vt=at=π(Jt).

The optimal policy, π∗ : Jt 7→ at, is formulated as

π∗(Jt) = argmax
at∈A

[
R(Jt,at) + γ∆t·vpref

·
∫
P (Jt+∆t | Jt,at) · V ∗(Jt+∆t) dJt+∆t

]
,

(1)

where γ is a discount factor; A denotes an action space; ∆t is
the time interval; V ∗ represents the optimal value function; P
is the transition probability; and R(Jt,at) means the reward
function, which punishes discomfort, intrusion, and collision,
as well as awards task completion. A well-designed reward

robot

P
3

P
2

P
1

O

dm

(a) Space of static group

robot
P

3

P
2

P
1

P
4

dm

(b) Space of dynamic group

Fig. 2. The spaces of static and dynamic groups are represented by convex
hulls with dashed line. The red arrow means the member’s orientation. dm is
the distance between the robot and a group. (a) denotes static group members
face inward towards the shared o-space. (b) shows dynamic group members
have similar walking speed, coincident orientation, and close proximity.

function will guide the robot to learn faster and better [22],
which will be fully discussed in III-B.

III. APPROACH

This section, firstly, introduces how to detect groups and
construct their spaces. Then, the newly designed reward
function, which contains a novel group reward and a new
closeness penalty term for the obstacle reward, is presented.
Finally, the architectures of GRI, ORU, HRI, and planning
subnetworks are detailed as shown in Fig. 1(b).

A. Group Space

The F-formation method [23] is used here to detect
static groups, as members in a static group maintain close
proximity and face inward towards the shared o-space, as
shown in Fig. 2(a). Meanwhile, a dynamic group comprises
members with similar walking speed, coincident orientation,
and close proximity, which can be detected by the DBSCAN
method [24], as illustrated in Fig. 2(b). A group is defined
as Gm

t ={i∈{1,...,I}|git=m}, where git is a label function
indicating the i-th pedestrian’s group ID. Given a pedestrian’s
space, Pi, defined as a circle with center pi

t and radius ri,
the group space, Gm

t , is extracted as a convex hull:

Gm
t = Convexhull({Pi | i ∈ Gm

t }), (2)

where Gm
t is encoded by a vector containing a set of points’

positions. An example of groups’ spaces is shown in Fig. 2.
The group state is defined as Gm

t = [pm
t ,v

m
t ,Gm

t , n
m
t],

where pm
t is the gravity center position of the convex hull;

vm
t represents the mean value of group members’ velocities;

and nmt is the number of group members.

B. Reward Function

In order to restrain the robot from intruding into groups,
the reward function R(Jt,at) is redesigned by proposing
a novel group reward, Rgrp. Meanwhile, to avoid obstacle
collision arising from motion uncertainties, the obstacle
reward, Robs, is modified to take safety redundancy into
account. R(Jt,at), containing four parts, is defined as

R(Jt,at) = Robs +Rprox +Rgrp +Rgl, (3)

The Robs, penalizing robot’s collision with obstacles or
approaching them too close, is formulated as

Robs =


−0.2 if ∃dk ≤ 0

−0.2 + 1
K

∑K
k=1 dk if 0 < dk ≤ 0.2

0 otherwise
, (4)

where dk denotes the distance from an obstacle to the robot.
Unlike prior methods [7], [14] that punish the robot only for

(a) GGI tensor (b) OGU tensor

(c) HGI tensor

:Lë
5áLì

5;

:Lë
7áLì

7;

:Lë
Ü áLì

Ü ;

||ç
Ü

:Lë
6áLì

6;
:Lë

8áLì
8;

:Lë
9áLì

9;
|
6

|
5

|
7
|
8

|
9

(d) HHI tensor

{|ç
Ü

:Lë
Þá Lì

Þ;

:Lë
Ü áLì

Ü ;

{
Þ

(e) OHU tensor (f) GHI tensor
Fig. 3. The features of GGI, OGU, and HGI, which have indirect effects on
the robot through the m-th group, are encoded by tensors PGm

t , OGm
t ,

and GGm
t , respectively. The features of HHI, OHU, and GHI, which

indirectly affect the robot through the i-th pedestrian, are modeled by tensors
PP i

t , OP i
t , and GP i

t , separately.

dk≤0, which is risky in reality as the motion uncertainties
(e.g., response delays) may cause collisions even when dk > 0,
a new closeness penalty term is added into (4) in this work.

The proximity reward, Rprox, penalizing the robot for
colliding with a pedestrian or intruding into a pedestrian’s
personal space, is designed as

Rprox =


−0.25 if ∃di ≤ 0
−0.25

I

∑I
i=1

d0.2
u −d0.2

i

d0.2
u

if 0 < di ≤ du
0 otherwise

, (5)

where di is the distance from a pedestrian to the robot; and
du denotes the threshold for uncomfortableness [8].

Although it is risky when the robot is close to a group, this
behavior has already been punished in Rprox as the group’s
periphery is composed of pedestrians. Therefore, Rgrp only
contains penalty for robot’s intruding into groups as

Rgrp =

{
−0.25 if ∃dm ≤ 0

0 otherwise
, (6)

where dm denotes the distance from a group to the robot.
The goal reward, Rgl, following our prior work [14], is

formulated as

Rgl =

{
1− 0.05 · vpref · tgl/d0gl if dtgl = 0

−0.1 · (dtgl − d
t−1
gl)/d0gl otherwise

, (7)

where tgl is the navigation time from the start to the goal.

C. Group–Robot Interaction Subnetwork

The robot is directly affected by a group, meanwhile is
also indirectly influenced by other groups, obstacles, and

�ç

:sç
5á|sç

5á{sç
5ássç

5;

:sç
Æ á|sç

Æ á{sç
Æ ássç

Æ;

...

ö
Ø
Ú
:I;

��5

��y

ð
Û
Ú
:I;

��5

��y

m
e
a
n

ð
�
Ú
:I;

Íà
@
5

Æ

�
�
���

�
�
:Ù
C
à
;�
�
à

��
ÙC5

ÙCÆ

Y
Y

Y

Y

Y

��

(a) GRI subnetwork

��
5

��
Ä

ÍÞ
@
5

Ä

�
�
���

�
�
:Ù
K
Þ
;
�
�
Þ

ÙK5

ÙKÄ

co

Y
Y

��
5

��
Ä

ð
Û
â
:I;

m
e
a
n

ð
�
â
:I;

��

Y
Y

Y

�ç

...

ö
Ø
â
:I;

{
5

{
Ä

(b) ORU subnetwork

�ç

:|ç
5á||ç

5á{|ç
5ás|ç

5;

:|ç
Â á||ç

Â á{|ç
Â ás|ç

Â;

...

ö
Ø
ã
:I;

��5

��u

ð
Û
ã
:I;

��5

��u

m
e
a
n

ð
�
ã
:I;

ÍÜ@
5

Â

�
�
���

�
�
:Ù
L
Ü;�

�
Ü

�� ÙL5

ÙLÂ

Y
Y

Y

cpY

Y

(c) HRI subnetwork
Fig. 4. Architectures of the GRI, ORU, and HRI subnetworks. (a) The GRI subnetwork extracts the features of GRIs (cg), representing mutual effects
between the robot and all groups. (b) The one-way effects of all obstacles on the robot, represented by the ORU features (co), are calculated by the ORU
subnetwork. (c) The mutual effects between the robot and all pedestrians, encoded by the HRI features (cp), are derived with the HRI subnetwork.

pedestrians through this group. The features of GRIs are ex-
tracted by a GRI subnetwork, while Group–Group Interaction
(GGI), Obstacle–Group Unilateral interaction (OGU), and
Human–Group Interaction (HGI) are respectively encoded by
map tensors GGm

t , OGm
t , and PGm

t , as shown in Fig. 3(a)–
3(c). Given the m-th group has a neighboring group set with
size NGm, a map tensor GGm

t centered at the m-th group
is built to encode GGI:

GGm
t (δx, δy, :) =

∑
n∈NGm

1δxδy(p
n
t − pm

t)Gn, (8)

where Gn=[vn
t ,Gn

t ,n
n
t] is the n-th group’s partial state and

1δxδy(∆x,∆y) checks whether (∆x,∆y) is in (δx,δy) or not.
Similarly to how GGm

t is constructed, tensors OGm
t and

PGm
t are built to encode OGU and HGI, respectively:

OGm
t (δx, δy, :) =

∑
k∈NOm

1δxδy(p
k − pm

t)Ok, (9)

PGm
t (δx, δy, :) =

∑
i∈NPm

1δxδy(p
i
t − pm

t)P i, (10)

where NOm and NPm are sizes of the m-th group’s neigh-
boring obstacle and pedestrian sets, respectively; Ok =
[θk, wk, lk] or [rk] is the k-th obstacle’s partial state; and
P i = [θi,vi, git] is the i-th pedestrian’s partial state.

The architecture of GRI subnetwork is shown in Fig. 4(a).
First, we embed St, Gm

t , GGm
t , OGm

t , and PGm
t into fixed-

length vectors egm. Then, the pairwise GRI features, hgm,
are obtained by a Multi-Layer Perceptron (MLP) with the
input of egm as

egm = ϕeg(St,G
m
t ,GGm

t ,OGm
t ,PGm

t), (11)

hgm = ϕhg(eg
m), (12)

where ϕeg(·) and ϕhg(·) are embedding functions, using
ReLU as activations. Simultaneously, another MLP is utilized
to calculate the attention score of each group, based on the
input of egm, denoting their significance to the robot as

αgm = ψαg(eg
m, eg), (13)

where ψαg(·) is an MLP with an ReLU activation; and
eg is the mean pooling operation of all egm, resulting
in a fixed-length embedding vector. In the end, the effects
of all neighbouring groups on the robot are calculated by
combining αgm and hgm as

cg =
∑M

m=1
softmax(αgm)hgm. (14)

D. Obstacle–Robot Unilateral Interaction Subnetwork

An obstacle has a one-way effect on the robot but its
state is unaffected by any other agents. Therefore, the ORU
features can be derived with the ORU subnetwork, only

taking robot’s and obstacles’ states as input. The ORU
subnetwork, as shown in Fig. 4(b), contains following layers:

eok = ϕeo(St,O
k
t), (15)

hok = ϕho(eo
k), (16)

αok = ψαo(eo
k, eo), (17)

co =
∑K

k=1
softmax(αok)hok, (18)

where ϕeo(·), ϕho(·), and ψαo(·) are MLPs with ReLUs;
eok is a fixed length vector; hok is the feature of unilateral
interaction between the k-th obstacle and the robot; αok is
the k-th obstacle’s attention score; eo is the mean pooling of
all eok; co is a weighted aggregation of all ORU features.

E. Human–Robot Interaction Subnetwork
The robot is directly affected by a pedestrian, meanwhile

is also indirectly influenced by other pedestrians, obstacles,
and groups through this pedestrian. The features of HRIs are
extracted by a HRI subnetwork, while HHI, OHU, and GHI
are respectively encoded with map tensors PP i

t , OP i
t , and

GP i
t , as shown in Fig. 3(d)–3(f). Given the i-th pedestrian

has a neighboring pedestrian set with size NPi, a tensor
centered at the i-th pedestrian is built to encode HHI:

PP i
t (δx, δy, :) =

∑
j∈NPi

1δxδy(p
j
t − pi

t)P
j . (19)

Similarly, OP i
t andGP i

t are built to encode OHU and GHI:

OP i
t (δx, δy, :) =

∑
k∈NOi

1δxδy(p
k − pi

t)O
k, (20)

GP i
t (δx, δy, :) =

∑
m∈NGi

1δxδy(p
m
t − pi

t)G
m, (21)

where NOi and NGi are sizes of the i-th pedestrian’s
neighboring obstacle and group sets, respectively.

The HRI subnetwork architecture is depicted in Fig. 4(c).
First, St, P i

t , PP i
t, OP i

t, and GP i
t are embedded into a

fixed-length vector epi. Then, epi is fed separately into
two MLPs to obtain the pairwise HRI features hpi and the
attention score of each pedestrian αpi. Finally, all hpi and
αpi are combined as cp to represent all pedestrians’ effects
on the robot. This introduces the following recurrence:

epi = ϕep(St,P
i
t ,PP

i
t ,OP

i
t ,GP

i
t), (22)

hpi = ϕhp(ep
i), (23)

αpi = ψαp(ep
i, ep), (24)

cp =
∑I

i=1
softmax(αpi)hpi, (25)

where ϕep(·), ϕhp(·), and ψαp(·) are MLPs with ReLU
activations; and ep is the mean pooling of all epi.

F. Planning Network

The features cg, co, and cp are concatenated with St

and input to the planning subnetwork fv(·), an MLP with an
ReLU activation, as depicted in Fig. 1(b). The final output of
fv(·), vt, denotes the estimated action command for robot.

IV. EXPERIMENTS

A. Simulation Setup and Network Training Process

We leverage the robo-gym simulation environment [25],
which is an integration of OpenAI Gym, Gazebo and ROS, to
train and evaluate our method. It allows using sensor plugins,
such as camera and Lidar, to simulate a perception system
with sensing noises, and actuator plugins to emulate motion
uncertainties, such as friction and response delays. This is
one of the main features of the proposed method compared
to prior work [19]–[21] that assume agents’ states are known
and presume no motion uncertainties. A custom implemen-
tation of the extended SFM [10] is applied to control the
motion of groups. The start and goal (if any) positions of
each pedestrian, obstacle, and group are randomly assigned
inside a square with a width of 10 m. The robot’s start and
goal positions are (0, 1) and (-2, 9), respectively.

The dimensions of the hidden layers in ϕeg(·), ψhg(·),
ψαg(·), ϕeo(·), ψho(·), ψαo(·), ϕep(·), ψhp(·), ψαp(·), and
fv(·) are set to (200, 150), (150, 100), (200, 200), (100,
50), (50, 25), (50, 50), (200, 150), (150, 100), (200, 200),
and (400, 200, 150), respectively. The radius r of the robot,
vpref , ∆t, and tlimit are set to 0.25m, 1m/s, 0.25s, and 25s,
respectively. The temporal-difference method is used to train
our network, based on fixed target network techniques and
standard experience replay [18]. Imitation learning (lines 1–
3) is used to initialize the network and then the DRL (lines
4–14) is utilized to optimize it, as shown in Algorithm 1.
Details of the training can be found in our prior work [8].

B. Simulation Experiments

1) Ablation Study for GRI: To verify the effectiveness
of our GRI subnetwork in group-awareness, ablation studies

Algorithm 1 Deep reinforcement learning.
1: Use demonstration D to initialize the replay memory E;
2: Train the value network V with E by imitation learning;
3: Use V to initialize the target network V̂ ;
4: for episodes from 1 to NUM do
5: Randomly initialize Jt=0;
6: while not not collide, timeout, or reach the goal do
7: at ← argmax

at∈A
[R(Jt,at) + γ∆t·vpref · V(Jt+∆t)];

8: value← R(Jt,at) + γ∆t·vpref · V̂(Jt+∆t);
9: Update E with tuple [value, Jt+∆t, at, Jt,];

10: Update V with random minibatch tuples from E;
11: end while
12: Update V̂ with V ;
13: end for
14: return V

TABLE I: Test results of ablation studies for GRI.
Scenario Method rs rc tgl a(s) ni no nf

SG1 GAP 0.95 0.00 11.71 0/500 3/500 2/500
GADRL∗ 1.00 0.00 10.23 0/500 48/500 29/500

SG2 GAP 0.79 0.09 23.48 19/500 5/500 7/500
GADRL∗ 0.97 0.00 19.22 2/500 91/500 63/500

Notes: (∗) refers to our method with only GRI and HRI subnetworks.
The rs, rc, tgl a, ni, no, and nf denote the success rate, collision rate,
average navigation time of successful episodes, total number of intruding,
overtaking, and following group cases, respectively.

are conducted, where the model contains only GRI and HRI
subnetworks, referred to as GADRL. We compare GADRL
to GAP [21], which uses a similar HRI mechanism to ours
but only models groups as polygons without considering
group states, as discussed in II-A. We examine two scenarios,
SG1: contains six individuals, a static group (two members),
and a dynamic group (three members); and SG2: consists of
eight individuals, two static groups (two and three members),
and two dynamic groups (three and two members). GADRL
and GAP are trained separately in their own simulation en-
vironment with SG1, followed by 500 random test episodes
conducted in robo-gym environment with both SG1 and SG2.

Table I reports the success rate rs, collision rate rc, average
navigation time of successful episodes tgl a, total number of
intruding ni, overtaking no, and following group cases nf ,
respectively. In SG1, GAP and GADRL exhibit comparable
results in rc and ni, while GADRL outperforming GAP
slightly in rs and tgl a. As the scenario complexity increases,
such as in SG2, the advantages of GADRL over GAP
become obvious, particularly in rs and tgl a. This is because
GADRL has learned both how to avoid intruding into groups
and how to overtake and follow a group when necessary.
In contrast, GAP has only learned to avoid intruding into
groups without considering group states or encoding GRIs,
which can be revealed by its no and nf . As a result, GAP
often gets stuck and has a deterioration in rs and tgl a.
Furthermore, the rc of GAP also worsens a little due to the
robot’s intruding into groups when it becomes stuck. The
GRI ablation studies demonstrate the essentiality and benefits
of considering group states and modeling GRIs.

2) Ablation Study for ORU: To assess the effectiveness
of our modified ORU subnetwork in obstacle avoidance,
ablation studies are executed with the model consisting of
only ORU and HRI subnetworks, referred to as OADRL.
OADRL is compared to the state-of-the-art GCNRL [11],
SOADRL [7], and OUDRL [14], which use a similar HRI
mechanism but no or different ORU mechanisms, as dis-
cussed in II-A. For a fair comparison, we feed obstacles into
GCNRL, which initially contains no obstacles, as multiple
standing pedestrians that have same sizes as the obstacles.
We examine two scenarios, SO1: “6 obstacles & 5 individu-
als”, and SO2: “10 obstacles & 8 individuals”. The training
and testing procedures are the same as described in IV-B.1.

Table II presents the rs, rc, tgl a, and average mini-
mum distance between the robot and obstacles of success-
ful episodes dk n. GCNRL treats all agents as pedestrians
without distinguishing obstacles, which causes GCNRL to

TABLE II: Test results of ablation studies for ORU.

Method 6 obstacles & 5 individuals 10 obstacles & 8 individuals

rs rc tgl a(s) dk n(m) rs rc tgl a(s) dk n(m)

GCNRL 0.69 0.00 22.73 0.26 0.52 0.08 24.91 0.24
SOADRL 0.86 0.08 14.31 0.19 0.21 0.65 23.72 0.02
OUDRL 0.91 0.07 11.57 0.08 0.77 0.18 20.43 0.04
OADRL∗ 1.00 0.00 9.15 0.25 0.98 0.00 18.87 0.22

Notes: (∗) refers to our method with only ORU and HRI subnetworks
and without GRI subnetwork. The dk n denotes the average minimum
distance between the robot and obstacles of successful episodes.

behave conservatively. As a result, it has a low rc but the
highest timeout rate (1−rs−rc) and longest tgl a. Nonetheless,
GCNRL exhibits best performance in dk n, due to it assumes
the obstacles possess social norms that the robot should
follow. SOADRL behaves better than GCNRL in rs and
tgl a with SO1, but its efficiency declines drastically with
SO2. This is because the occupancy grid map is utilized by
SOADRL to model obstacles, and it can merely achieve good
performance if the map utilized in testing is similar to the
one used in training. In other words, SOADRL is sensitive
to environment changes and has a low generality. OUDRL
encodes obstacles and pedestrians with various subnetworks,
which enables it to outperform GCNRL and SOADRL in
rs and tgl a. However, OUDRL only penalizes the robot
when obstacle collision happens, which makes it aggressive
and underperforms GCNRL in rc and dk n. Our OADRL
outperforms the baseline methods almost in all metrics. The
increase in rs and decrease in tgl a compared to GCNRL
highlight the necessity of encoding pedestrians and obstacles
separately. The decrease in rc and increase in dk n compared
to both SOADRL and OUDRL reveal the advantages of
incorporating sensing noises and motion uncertainties, as
well as providing safety redundancy for obstacle avoidance.

3) Quantitative Evaluation of the Full Model: Our full
model, referred to as A2DRL, is compared against SOADRL,
OUDRL, and GAP. To ensure a fair comparison, groups are
added to SOADRL and OUDRL, controlled by the same
policy as ours, and obstacles are fed into GAP following the
approach described in IV-B.2. We examine two scenarios,
SGO1: contains three individuals, six obstacles, a static
group (two members), and a dynamic group (three members);
and SGO2: consists of five individuals, eight obstacles, two
static group (two and three members), and two dynamic
group (three and two members). The training and testing
procedures are the same as described in IV-B.1.

The full model method’s test results are displayed in
Table III. SOADRL and OUDRL perform poorly in ni, which
is not socially compliant, as they do not consider groups. The
frequent intrusion into groups shows the need for a policy
that factors in groups. By learning how to avoid intrud-
ing into groups, GAP achieves a better ni than SOADRL
and OUDRL. However, it still suffers from performance
degradation when the environment becomes dense, such as
a dramatic reduction in rs and a large increase in both rc
and ni with SGO2. This is due to the fact that GAP only
considers the group’s geometry, ignoring the interaction or
unilateral interaction between the group and other agents, and

TABLE III: Test results of the full model in simulation.
Method rs rc tgl a(s) ni no nf dk n(m)

SGO1

SOADRL 0.79 0.12 14.52 59/500 1/500 2/500 0.17
OUDRL 0.86 0.10 12.02 46/500 0/500 3/500 0.05
GAP 0.91 0.03 15.06 7/500 2/500 3/500 0.25
A2DRL∗ 1.00 0.00 12.81 0/500 45/500 34/500 0.23

SGO2

SOADRL 0.18 0.67 24.97 99/500 0/500 0/500 0.01
OUDRL 0.72 0.22 22.76 87/500 0/500 1/500 0.03
GAP 0.74 0.12 24.69 26/500 3/500 5/500 0.23
A2DRL∗ 0.96 0.01 20.75 3/500 84/500 70/500 0.21

Notes: (∗) refers to our method with GRI, ORU, and HRI subnetworks.

31 2 4 5 6 Robot

Goal

1 m

7 8

7.0

0.0

4.0

4.0

4.0

0.0

7.0

0.0

4.0

0.0

7.0

0.0

4.0

7.0

:rár;

7.0

(a) SOADRL

1 m

31 2 4 5 6 Robot

Goal

7 8

0.0

8.0

11.6

0.0

4.0

4.0

8.0

11.6

11.6

4.0

0.0

0.0

4.0

8.0

11.6:rár;

0.0

8.0

11.6

8.0

4.0

(b) OUDRL

1 m

31 2 4 5 6 Robot

Goal

7 8

8.0 4.0

0.0

8.0

4.0

12.0

4.0

8.0

15.7

0.0

4.0

8.0

15.7

0.0

4.0

0.0

0.0

8.0

12.0

15.7

12.0

:rár;

15.7
12.0

15.7

(c) GAP

1 m

31 2 4 5 6 Robot

Goal

7 8

0.0

4.0

8.0 4.0

8.0

0.0

0.0

8.0

4.0

0.0

4.0

8.0

13.1

8.0

3.0

12.0

13.1

0.0

13.1

:rár;

13.1

12.0

13.1

12.0

(d) A2DRL(ours)
Fig. 5. Example test trajectories of SOADRL, OUDRL, GAP, and A2DRL
in SGO1. Rectangles and circles bearing a cross indicate obstacles, while
hollow circles represent pedestrians. Groups are outlined by convex hulls
and their members are highlighted in the same color. Pedestrians’ positions
are labeled with time and their IDs are displayed on the right-top corner.
The coordinate origin is marked by (0, 0).

has not learned how to follow or overtake a group, as shown
by its no and nf . Our A2DRL outperforms other methods,
achieving the highest rs, lowest rc, least ni, and nearly
best results in tgl a and dk n. These results demonstrate the
advantages of our novel GRI subnetwork in group awareness
and improving navigation efficiency, as well as the benefits of
our modified ORU subnetwork in reducing obstacle collision
by considering noises and uncertainties.

Notably, it is found that OUDRL has the shortest tgl a in
SGO1 but not in SGO2. This may be due to that OUDRL
reaches its goal successfully by intruding into groups in
a sparse scenario, however, intruding causes collision in a
dense scenario. We also observe GAP has the best perfor-
mance in dk n because it treats obstacles as pedestrians.

4) Qualitative Evaluation of the Full Model: The effec-
tiveness of our method are further investigated by qualitative
evaluation. Test trajectory examples of SOADRL, OUDRL,
GAP, and A2DRL with SGO1 are shown in Fig. 5. The

Lidar RealSense

camera

workstation

Pioneer 3-AT

(a) Hardware

ego-perspective

L
id

ar
 s

ca
n

robot
frame

walking
group

depth image

person 0.93person 0.94

walking
group 0.91

exo-perspective

(b) Experiment in corridor

ego-perspective

person 0.92person 0.89

static group 0.91
box 0.83

person 0.97

exo-perspective

chair 0.61

extinguisher 0.93

goal

depth image

static
group

origin

Lidar scan

(c) Experiment in room

Fig. 6. Real-world experiments. (a) is the experiment hardware. (b) and
(c) show snapshots of real-time experiments pictured from the robot ego-
and exo- perspectives, 3D Lidar data, and depth images.

robot trained by SOADRL chooses to traverse through the
static group to obtain a short route to its goal. However, it
collides with the first pedestrian at around 7.0s, due to its
inability to anticipate the pedestrian’s direction change when
encountering an obstacle. Similar to SOADRL, OUDRL also
intrudes into the static group to reduce tgl a and successfully
avoids collisions with the first pedestrian owing to its mod-
eling of obstacle unilateral interaction. Unlike SOADRL and
OUDRL, GAP can avoid intruding into groups, but it simply
treats them as geometric spaces without accounting for group
interaction with other agents or considering group states.
Therefore, when encountering a group at approximately 7.5s,
GAP does not know how to follow or overtake the group,
resulting in a detour path and a large tgl a. In contrast,
our A2DRL overtakes the group from 8.0s to 12.0s while
maintaining a suitable distance from it, which leads to a
shorter route and a smaller tgl a compared to GAP.

C. Real-world Experiments

In addition to the simulation experiments described in the
above subsections, the trained policy is further evaluated in
reality, using a Pioneer 3-AT robot equipped with a Re-
alSense camera D455 and a 3D Lidar as shown in Fig. 6(a).
First YOLOv5 [26] is applied on the real-time RGB images
to detect objects and Kalman filter is utilized to obtain
objects’ positions and sizes by processing the aligned depth
images and Lidar scan [28] as illustrated in Fig. 6(b) and
6(c). Then, pedestrians’ velocities are estimated with optical
flow [27] and groups are detected based on F-Formantions
and DBSCAN. A mobile workstation, composed of an Intel
Core i9-13900K CPU with 32 cores and 2 threads per core,
is utilized for carrying out high-level computations, such

intrude

not intrude

goal

turn right

static group

robot path

(a) Bypassing a static group

overtake

goal walking group

robot path overtake

(b) Overtaking a walking group

Fig. 7. Results of room real-world experiment. The left of (a) and (b)
are snapshots of real-time experiments, while the right are pictured paths
chosen by the robot based on A2DRL. (a) The robot bypasses a static
group that occludes the robot’s straight route to its goal, choosing a more
socially compliant path to avoid intruding. (b) The robot overtakes a walking
group that is moving slowly, implementing an efficient navigation policy to
minimize time costs.

as pedestrian detection and network inference. The motion
command is updated at 10Hz. To validate the applicability
of our method from the training environment to real-world
settings and its ability to function across diverse scenarios,
we performed two experiments in a room and a corridor, as
shown in Fig. 7 and 8.

1) Experiment in a Room: To verify the applicability
of A2DRL, experiment is first conducted in a rectangular
room (8m * 9m), which is comparable to the environment in
simulation in terms of size and agent composition. The world
coordinate’s origin is set at the midpoint of the bottom edge,
and the robot’s start and goal positions are (0, 0.5) and (-2,
8), respectively. Benefiting from A2DRL, the robot is able
to bypass a static group who is standing on the front of its
path, disregarding to the shorter route and avoiding intrusion,
as shown in Fig. 7(a). Moreover, the robot successfully
overtake a slow walking group to save its navigation time as
illustrated in Fig. 7(b). These results verify the capability of
the proposed GRI subnetwork in being group aware, able to
not intrude into groups and overtake a group when necessary.

2) Experiment in a Corridor: The primary aim of corridor
experiment is to examine the generality of our proposed
method, as the corridor setting is greatly different from the
training environments. The corridor is shaped as a rectangle
(2.1m * 29m), three times longer and one-fifth width of the
training environment. The robot starts from the midpoint of
the short edge and ends on the opposite side. As shown in
Fig. 8(a), the robot takes variant strategies and distances to
pass an obstacle and a pedestrian, respectively guaranteeing
social norms and safety, which verifies the effectiveness of
our modified ORU subnetwork in avoiding obstacle collision.
Moreover, the robot decelerates to follow a walking group
when the path is obstructed, as well as slows down and

0.23m

0.41m

(a) Passing obstacle vs. pedestrian

follow

walking
group

robot

(b) Following a walking group

turn right

walking
group

robot

turn
right

(c) Passing a walking group

Fig. 8. Results of corridor real-world experiment. (a) The robot utilizes
distinct strategies and distances to pass an obstacle and a pedestrian. (b) The
robot decelerates to follow a walking group, when the path is obstructed, as
opposed to stopping. (c) The robot slows down, turns right, and interactively
avoids collision with a walking group, passing it safely and efficiently in
the narrow and crowded passage.

turns to pass a walking group instead of stopping, as shown
in Fig. 8(b) and 8(c). These result proves that, based the
proposed method, the robot has successfully learned how to
interact with groups.

V. CONCLUSION

A novel DRL architecture for all aware robot navigation
in human coexisting environments, A2DRL, has been de-
veloped in this work. There are three main contributions:
First, a new GRI subnetwork, which models the mutual
effects between the groups and the robot, has been proposed.
Second, our prior ORU subnetwork is modified to avoid
obstacle collision arising from sensing noises and motion
uncertainties, as well as to provide safety redundancy by
designing a new reward function for DRL. Third, the results
of simulation experiments demonstrate that the proposed
approach outperforms the current cutting-edge methods re-
garding the group awareness, collision rate, success rate,
and navigation time. The real-world experiments demonstrate
our approach’s applicability, which can be transferred from
learning environment to reality, and its robust generality to
work in different scenarios. For future work, we plan to
develop an “active path clearing” policy, such as asking for
passage with a speaker and moving away an obstacle (e.g., a
chair) with an equipped manipulator, to improve navigation
efficiency in denser and more complex environments.

REFERENCES

[1] H.A. Pierson and M.S. Gashler, “Deep learning in robotics: A review
of recent research,” Adv. Robot., 2017, vol. 31, no. 16, pp. 821–835.

[2] J. Van den Berg, S.J. Guy, and et al., “Reciprocal n-body collision
avoidance,” Robot. Res., Springer, 2011, no. 70, pp. 3–19.

[3] V.V. Unhelkar, C. Perez-D’Arpino, and et al., “Human-robot co-
navigation using anticipatory indicators of human walking motion,”
IEEE Int. Conf. Robot. Autom., 2015, pp. 6183–6190.

[4] P. Trautman and A. Krause, “Unfreezing the robot: Navigation in
dense, interacting crowds,” IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2010, pp. 797–803.

[5] Y.F. Chen, M. Liu, and et al., “Decentralized non-communicating
multiagent collision avoidance with deep reinforcement learning,”
IEEE Int. Conf. Robot. Autom., 2017, pp. 285–292.

[6] C. Chen, Y. Liu, and et al., “Crowd-robot interaction: Crowd-aware
robot navigation with attention-based deep reinforcement learning,”
IEEE Int. Conf. Robot. Autom., 2019, pp. 6015–6022.

[7] L. Liu, D. Dugas, and et al., “Robot navigation in crowded environ-
ments using deep reinforcement learning,” IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2020, pp. 5671–5677.

[8] X. Lu, H. Woo, and et al., “Socially aware robot navigation in crowds
via deep reinforcement learning with resilient reward functions,” Adv.
Robot., 2022, vol. 36, no. 8, pp. 388–403.

[9] A.F. Aveni, “The not-so-lonely crowd: Friendship groups in collective
behavior,” Sociometry, 1977, vol. 40, no. 1, pp. 96–99.

[10] M. Moussaı̈d, N. Perozo, and et al., “The walking behaviour of
pedestrian social groups and its impact on crowd dynamics,” PloS
one, 2010, vol. 5, no. 4, e10047.

[11] Y. Chen, C. Liu, and et al., “Robot navigation in crowds by graph
convolutional networks with attention learned from human gaze,”
IEEE Robot. Autom. Lett., 2020, vol. 5, no. 2, pp. 2754–2761.

[12] C. Chen, S. Hu, and et al., “Relational graph learning for crowd nav-
igation,” IEEE/RSJ Int. Conf. Intell. Robots Syst., 2020, pp. 10007–
10013.

[13] W. Shi, Y. Zhou, and et al., “Enhanced spatial attention graph for
motion planning in crowded, partially observable environments,” IEEE
Int. Conf. Robot. Autom., 2022, pp. 4750–4756.

[14] X. Lu, H. Woo, and et al., “Robot navigation in crowds via deep
reinforcement learning with modeling of obstacle uni-action,” Adv.
Robot., 2023, vol. 37, no. 4, pp. 257–269.

[15] D. Helbing and P. Molnar, “Social force model for pedestrian dynam-
ics,” Phys. Rev. E, 1995, vol. 51, no. 5, pp. 4282.

[16] G. Ferrer and A. Sanfeliu, “Behavior estimation for a complete
framework for human motion prediction in crowded environments,”
IEEE Int. Conf. Robot. Autom., 2014, pp. 5940–5945.

[17] J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity
obstacles for real-time multi-agent navigation,” IEEE Int. Conf. Robot.
Autom., 2008, pp. 1928–1935.

[18] V. Mnih, K. Kavukcuoglu, and et al., “Human-level control through
deep reinforcement learning,” Nature, 2015, vol. 518, no. 7540,
pp. 529–533.

[19] Y.F. Chen, M. Everett, and et al., “Socially aware motion planning
with deep reinforcement learning,” IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2017, pp. 1343–1350.

[20] M. Everett, Y.F. Chen and J.P. How, “Motion planning among dy-
namic, decision-making agents with deep reinforcement learning,”
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2018, pp. 3052–3059.

[21] K. Katyal, Y. Gao, and et al., “Learning a group-aware policy for
robot navigation,” IEEE/RSJ Int. Conf. Intell. Robots Syst., 2022,
pp. 11328–11335.

[22] G. Lample and D.S. Chaplot, “Playing FPS games with deep rein-
forcement learning,” AAAI Conf. Artif. Intell., 2017, vol. 31, no. 1.

[23] F. Setti, C. Russell, and et al., “F-formation detection: Individuat-
ing free-standing conversational groups in images.” PloS one, 2015,
vol. 10, no. 5, e0123783.

[24] A. Wang, C. Mavrogiannis, and A. Steinfeld, “Group-based motion
prediction for navigation in crowded environments,” Conf. Robot
Learn., PMLR, 2022, pp. 871–882.

[25] M. Lucchi, F. Zindler, and et al., “robo-gym: An open source toolkit for
distributed deep reinforcement learning on real and simulated robots,”
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2020, pp. 5364–5371.

[26] G. Jocher, A. Stoken, and et al., “ultralytics/yolov5: v5.0 - YOLOv5-
P6 1280 models, AWS, Supervise.ly and YouTube integrations,” 2021,
Available: https://doi.org/10.5281/zenodo.4679653

[27] D. Fortun, P. Bouthemy, and C. Kervrann, “Optical flow modeling and
computation: A survey,” Comput. Vis. Image Und., 2015, vol. 134
pp. 1–21.

[28] T. Shan, and B. Englot, “Lego-loam: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain,” IEEE/RSJ
Int. Conf. Intell. Robots Syst., 2018, pp. 4758–4765.

