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Abstract— Vision-based self-localization is a crucial technol-
ogy for enabling autonomous robot navigation in GPS-deprived
environments. However, standard frame cameras are subject
to motion blur and suffer from a limited dynamic range. This
research focuses on efficient feature tracking for self-localization
by using event-based cameras. Such cameras do not provide
regular snapshots of the environment but asynchronously collect
events that correspond to a small delta of illumination in
each pixel independently, thus addressing the issue of motion
blur during fast motion and high dynamic range. Specifically,
we propose a continuous real-time asynchronous event-based
feature tracking pipeline, named RATE. This pipeline integrates
(i) a corner detector node utilizing a time slice of the Surface of
Active Events to initialize trackers continuously, along with (ii)
a tracker node with a proposed “tracking manager”, consisting
of a grid-based distributor to reduce redundant trackers and
to remove feature tracks of poor quality. Evaluations using
public datasets reveal that our method maintains a stable
number of tracked features, and performs real-time tracking
efficiently while maintaining or even improving tracking accu-
racy compared to state-of-the-art event-only tracking methods.
Our ROS implementation is released as open-source: https:
//github.com/mikihiroikura/RATE

I. INTRODUCTION

Autonomous robots are emerging as transformative tools
for exploring dangerous and uncharted territories, pushing
the boundaries of human access. This capability is par-
ticularly important for tasks too risky for direct human
interaction, as exemplified by quadrupedal robots deployed
in challenging environments and equipped with laser sensors
and cameras for perception [1], [2]. Similarly, unmanned
aerial vehicles (UAVs) have played a crucial role in not
only terrestrial but also Martian terrain exploration [3], [4].
Realizing these diverse mission scenarios depends on robust
vision-based self-localization systems, such as Visual Odom-
etry (VO) [5] and Simultaneous Localization and Mapping
(SLAM) [6]. These systems enable autonomous navigation
even when GPS becomes unavailable. However, vision-based
approaches are susceptible to errors under challenging condi-
tions including high-dynamic range (HDR) and fast motions
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Fig. 1: Comparison of our proposed Real-time Asynchronous
Tracking pipeline with Event cameras (RATE) with the
baseline of multiple HASTE [8] trackers initialized by Shi-
Tomasi corner detector. In the baseline methods (top row),
redundant trackers are positioned closely together and persist
even after updates. Compared to these baselines, RATE
distributes trackers across the entire field of view without
overlapping.

(see [7] for an attempt to quantify challenging situations in
visual SLAM). Consequently, these limitations can lead to
system failures and impede successful mission completion.

As a promising countermeasure for these challenges faced
by conventional vision sensors in autonomous robots, event-
based cameras, inspired by biological vision systems [9],
have recently emerged and gained popularity [10]. Event-
based cameras operate asynchronously, recording pixel-level
brightness changes as events e = {t, x, y, p} in real time.
An event e is represented by the pixel location (x, y), a
timestamp t with microsecond resolution, and a polarity
p indicating the direction of the brightness changes [11].
These characteristics offer numerous advantages in event-
based cameras over frame-based cameras, in particular high-
dynamic range, robustness to motion blur, and low latency.
With a dynamic range of 140 dB, event-based cameras can
reduce the impact of lighting conditions such as direct



sunlight and sudden shadows. Additionally, event-based cam-
eras enable localization in high-speed scenarios thanks to
their robustness to motion blur and low latency. There-
fore, event-based cameras have the potential to revolutionize
autonomous robots by offering powerful solutions to the
challenges of vision-based self-localization.

Motivated by the advantages of event-based cameras for
VO in autonomous robots [12], [13], this research tackles
the challenge of real-time, continuous feature tracking. As
a crucial element in vision-based self-localization, feature
tracking demands uninterrupted operation with minimal la-
tency. Moreover, the ability to track multiple features in
parallel is essential for robust ego-motion estimation. We
propose a novel pipeline (named “RATE”) specifically de-
signed for continuous, real-time tracking of multiple features
using asynchronous event data. As illustrated in Figure 1,
RATE focuses on efficiency by tracking solely non-redundant
features that are spatially well-distributed throughout the
image plane. We describe RATE in detail in section III. To
evaluate the proposed pipeline, we employ publicly available
event datasets [14] captured in real-world environments.
Our results, presented in section IV, demonstrate significant
improvements over conventional event-based feature tracking
methods, such as EKLT [15], in terms of both the number of
simultaneously tracked features and real-time performance.

II. RELATED WORK

Monocular event-based VO and SLAM have emerged as
active research topics to overcome the challenges faced by
frame-based cameras. The pioneering method, EVO [16],
employs a direct approach by generating a 3D depth map
from events, enabling accurate estimation of 6 Degree-
of-Freedom (DoF) without event-based feature extraction.
However, the computational cost associated with 3D depth
map generation is impeding real-time processing. In contrast,
some indirect approaches in VO and SLAM generate frame-
like representations of event data and utilize feature-based
methods. For instance, Glover et al. [17] apply Harris corner
detection to an edge map updated with each event. On the
other hand, Ultimate SLAM [18] incorporates an Inertial
Measurement Unit (IMU) for motion compensation and
generates accumulated events for FAST corner detection [19]
and KLT tracking [20]. These approaches leverage traditional
frame-based methods by aggregating batches of events in
image-like data structures. However, they partially sacrifice
the unique advantages of event-based cameras, particularly
asynchronous data processing whereas VIO methods like
[21] and [22] show that events can be individually accounted
in the state estimation back-end. Unfortunately, the line
detection and tracking front-end of [21] suffer from high
computational cost, and the tracking strategy of [22] lacks
robustness.

Some researchers have also contributed to event-driven
feature detection [23] and tracking [24], [25]. These ap-
proaches allow for individual and asynchronous updates of
features with each event. The event-driven feature detection
in [23] achieves real-time performance by exploiting the

shape of the Surface of Active Events (SAE) [26], [27]. How-
ever, this method does not perform tracking and the detection
itself is quite noisy, especially in rotational motion [26]. The
event-based tracking proposed in [24] suffers from limita-
tions in accuracy and computational speed, hindering real-
time implementation. On the other hand, the event pattern
tracking with Gaussian Process [25] has improved accuracy
but remains computationally expensive and thus falls short
in terms of real-time performance. EKLT [15] combines the
advantages of frame-based and event-based cameras, lever-
aging features that are independent of motion direction in
frame-based cameras while benefiting from the high dynamic
range and absence of motion blur in event-based cameras.
By exploiting these benefits, EKLT achieves asynchronous
feature tracking with high temporal resolution. However,
the computational cost of this tracking method hinders real-
time processing on standard hardware. On the other hand,
HASTE [8], a novel event-driven tracking methodology, can
track features in patches asynchronously relying solely on
events. The method involves generating a template patch and
a model updated by the latest event. From a small number
of potential movements (“hypotheses”), the one that maxi-
mizes the correlation between the template and the model
is selected, allowing for continuous updates of the feature
state (position and rotation) with low latency. However,
HASTE requires manual initialization to initiate tracking and
cannot recover tracking once it is lost. Furthermore, efficient
handling of multiple tracking instances with HASTE has not
been considered so far.

Considering these related works on event-based feature
tracking, we propose an approach that achieves (i) con-
tinuous, (ii) real-time, and (iii) event-based asynchronous
tracking of multiple features.

III. PROPOSED METHOD

Figure 2 shows an overview of our proposed pipeline
RATE for continuous real-time event-based asynchronous
multiple feature tracking. The input is an event stream where
an event ei = (ti, xi, yi, pi) consists of timestamps t [µs],
pixel coordinates (x, y) [px], and polarities p (-1 or 1).
RATE comprises a corner detector node and a tracking node.
The corner detector node receives events and publishes track
seeds at 30 Hz, which include the initial positions of trackers.
The tracker node, with its distributor, initializes HASTE
trackers [8] in each sub-image with published track seeds,
updates them for each single event of the input stream, and
publishes tracking results asynchronously depending on the
timestamp of each single event. Finally, the proposed pipeline
RATE outputs tracking ID, updated timestamp, and pixel
coordinates as tracking results. The following subsections
explain about procedure in the nodes in more detail.

A. Corner detector node with time slice of Surface of Active
Events

Figure 3 illustrates the procedure of corner detection
for tracking initialization. The Surface of Active Event
(SAE) [26], [27] is a frame-like representations of events,
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Fig. 2: Overview of proposed real-time pipeline RATE for
continuous event-based tracking of multiple features

where each pixel stores the timestamp of the latest event
occurrence at that pixel. The SAE is updated with each
event. An example of a SAE is shown at the top right
of Fig. 3, with recent events depicted as light gray bars
(independent of polarity). To apply the Shi-Tomasi corner
detector [28], the SAE is periodically binarized at 30 Hz
with a threshold determined by the median of timestamp
differences Tdif(u,v) = tlatest − t(u,v) between the latest
event and the events recorded at each pixel. Consequently,
the bright pixels in the binarized SAE correspond to recent
events, while the dark pixels correspond to old events. Due to
the noisy nature of the event stream and the SAE binarization
process, corners from the Shi-Tomasi detector might not
be reliable for HASTE’s patch-based tracking. Accordingly,
after Shi-Tomasi corner detection on the binarized SAE,
the PCA algorithm is applied to the neighborhood of each
detected corner to evaluate if the surrounding features are
on a line or not, based on the eigenvalues of PCA. The
features on lines are considered less informative due to the
potential linear shift during event-based feature tracking.
Therefore, the features identified as being on lines through
PCA evaluation are discarded, while the remaining features
are published as track seeds to the tracker node.

B. Tracker node with sub-image and distributor

The proposed pipeline RATE utilizes HASTE [8], an
asynchronous event-based feature tracker. Each feature in
HASTE is initialized with a tracking state x = {x, y, θ}
and a template patch T configured by a small event window
E of the latest m events. With each event within a certain
range, the current event window is updated and the tracking
state is calculated according to Eq. (1), which consists of the
correlation called “alignment score f” between the current
event window E and the template patch T for a set of discrete
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Detect 
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Median of 

Input: Event stream

Fig. 3: Procedure of corner detector for tracking initialization
by using a time slice of the Surface of Active Events (SAE)

hypothetical states H,

x(k+1) = argmax
x∈H(x(k))

f
(
E(k+1), T (k+1),x

)
, (1)

where

H(x) = {(x = {x, y, θ})∪{x±∆x, y±∆y, θ±∆θ}}. (2)

Actual values are ∆x = ∆y = 1.0, and ∆θ = 4.0◦. More-
over, perturbations are performed separately for translation
and rotation. This means that when ∆x and ∆y are 1.0,
∆θ is 0. Similarly, when ∆θ is 4.0◦, ∆x and ∆y are 0.
Therefore, the number of alignment scores f(E , T ,x) to be
evaluated is 11 based on the hypothetical states H(x).

To facilitate multiple real-time tracking tasks by distribut-
ing and reducing unnecessary multiple HASTE trackers, we
propose a “tracking manager” consisting of sub-images and
a distributor as shown in Fig. 4. The sub-image dimensions
are determined based on the template patch size used in
HASTE. Each tracker is assigned to a specific sub-image
for updates. For each event, the distributor dynamically
regulates the number of trackers assigned to each sub-image
during updates, as shown in Fig. 5. During tracking updates,
HASTE trackers can be re-initialized with track seeds from
the corner detector node in case no tracker exists in a sub-
image. Subsequently, the positions of trackers within the
distributor are adjusted based on the updated tracking states
of all HASTE trackers triggered by a single event. Finally,
two evaluation steps are performed to reduce unnecessary
trackers in all sub-images. In the first step, trackers evaluated
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as poor quality according to Eq. (3) are removed,

max
x∈H(x)

f (E , T ,x)− min
x∈H(x)

f (E , T ,x)

max
x∈H(x)

f (E , T ,x)
< threshold . (3)

This is motivated by the finding that, when tracking quality
deteriorates, the range between the best and worst scores
narrows. In the second step, in case multiple HASTE trackers
occupy the same sub-image Si, the tracker with the best score
Tbest is retained by using one of the evaluation functions
described in Eq. (4), Eq. (5), and Eq. (6), while others are
removed,

Tbest = argmax
Tk∈Si

(
max

xk∈H(xk)
f (E , T ,xk)

)
, (4)

Tbest = argmax
Tk∈Si

(lsk) , (5)

Tbest = argmax
Tk∈Si

(
lsk · max

xk∈H(xk)
f (E , T ,xk)

)
. (6)

Eq. (4) selects the tracker with the highest alignment score
f . On the other hand, Eq. (5) favors the tracker with the
longest lifespan ls. Finally, Eq. (6) takes not only the higher
alignment score but also longer lifespan into account by
simply multiplying them. Future work may lead to more
sophisticated combinations of both criteria.

In cases where tracking is terminated or assessed as
poor quality by the tracking manager, a new tracker is
generated using the latest track seed from the corner detector
node, ensuring the continuity of tracking. As the changes
in position based on the hypothetical states are sufficiently
small compared to the size of sub-images, it can be assumed
that the maximum number of trackers within a sub-image
following an update can reach a total of 9, as shown in the
right side of Fig. 4.
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Fig. 5: Real-time tracking update by regulating the number of
trackers in each sub-image with distributor. The main steps
are: (i) (re-)initialize inactive trackers with track seeds from
corner detector node for sub-images without feature tracks (if
a seed is available for the considered sub-image), (ii) update
state of trackers for each event and determine trackers for
each sub-image, (iii) terminate feature tracks of poor quality,
(iv) select best tracker for each sub-image. The process from
(ii) to (iv) is repeated for each event, while the process (i)
intervenes in the loop process based on the distributor.

IV. EXPERIMENTS

A. Experimental configuration

We compare our proposed tracking pipeline RATE with
four methods: EKLT [15], Zhu’17 [24], HASTE-100, and
HASTE-20. HASTE-100 and HASTE-20 are straightforward
extensions of HASTE [8] to multi-feature tracking that we
implemented. Using the respective open-source codes1,2,3,4,
the methods were integrated in a ROS environment, except
Zhu’17†. EKLT leverages both frames and events for en-
hanced tracking accuracy, while Zhu’17 and HASTE focus
solely on event data. Table I provides information about
detector, tracker, and tracker initialization frequency used for
each method to evaluate continuous real-time tracking. EKLT
utilized Harris corner detector on frames for initialization
of tracking. In all other methods, tracking is initialized
using events only. Zhu’17 uses accumulated events, while
both HASTE and RATE rely on the SAE as event-based
image representations, and apply Harris or Shi-Tomasi corner
detector to these images. In RATE, as described in section III,
PCA is used to remove features on lines and a tracking

1https://github.com/uzh-rpg/rpg feature tracking analysis
2https://github.com/uzh-rpg/rpg eklt
3https://github.com/daniilidis-group/event feature tracking
4https://github.com/ialzugaray/haste
†The published code is implemented in MATLAB and has no optimization

in terms of computational cost for real-time process.



TABLE I: Detectors and Trackers in all methods for evaluation of continuous real-time tracking

Method Data Detector Tracker (Potential) Tracker initialization frequency

EKLT
Frames

& Events
Frame & Harris EKLT Only first frame

Zhu’17 Events
Accumulated events

& Harris
Zhu’17

Whenever number of trackers
reaches 0

HASTE-100 Events
Time slice SAE
& Shi-Tomasi

HASTE
+ Maximum number: 100

Every event stream (30 Hz)

HASTE-20 Events
Time slice SAE
& Shi-Tomasi

HASTE
+ Maximum number: 20

Every event stream (30 Hz)

Ours: RATE Events
Time slice SAE

& Shi-Tomasi + PCA
HASTE

+ Sub-image & Distributor
Every event stream (30 Hz)

manager is deployed. The default function for evaluation 2
(see Fig. 4) is Eq. (4), and the threshold in Eq. (3) is
set to 0.1. We analyze the sensitivity of RATE to these
parameters with respect to tracking accuracy and lifespan
in Section IV-C. As baselines for our RATE, HASTE-100
and HASTE-20 have the number of trackers limited to 100
and 20 respectively. These methodologies were evaluated on
the Event Camera Dataset [14], focusing on the“boxes 6dof”
and “bicycles” datasets. The event data stream in these
datasets is published as variable-length arrays of events at
around 30Hz. The resolution of the event-based camera in
these datasets is 180×240; HASTE patch size and sub-
image dimensions are set to 30×30. Consequently, RATE can
accommodate a maximum of 48 HASTE trackers. To analyze
the tracking results more comprehensively, we modified the
code of the “rpg feature tracking analysis” repository [29]
to evaluate the number of continuous trackers, real-time
performance, feature distribution, tracking error, and lifespan
across various tracking runs starting at different timestamps
of the data sets. The evaluation setup included an AMD
Ryzen 9 5900X Processor, 32 GB RAM running at 2667
MT/s memory speed, and each node was executed on a single
CPU core.

B. Qualitative evaluation

We qualitatively evaluated the continuous real-time track-
ing behavior in three methods - HASTE-100, HASTE-20,
and RATE. Figure 1 displays the tracking result of three
methods for the dataset “boxes 6dof” at a specific time
(t = 5.13 s). The timeline of these images was managed
by the ROS master, hence any delays of published data
relative to the ROS master are reflected in these figures. The
two sub-figures in the top row show spatially clustered and
overlapping features for HASTE-100 and HASTE-20, while
RATE distributes trackers throughout the entire field of view,
ensuring the absence of redundant feature tracks and a better
spatial coverage, which is known to be beneficial for reliable
ego-motion estimation.

Figure 6 shows another tracking example for the same
dataset as Fig. 1. The orange arrow indicates the ground
truth movement of objects towards the bottom left in frames.
The directions of tracked seeds in HASTE-20 and RATE,
illustrated by green lines, are closely aligned with the ground
truth (orange arrow). However, the direction shown by the

HASTE-100 HASTE-20 Ours: RATE

9.60 s9.60 s 9.60 s 9.60 s9.60 s

10.00 s 10.00 s 10.00 s

9.80 s 9.80 s 9.80 s

Orange : Tracked Edges in frames as ground truth
Blue      : Tracking results in wrong direction
Green : Raw tracking results with trajectories for max. 0.33 s

Fig. 6: Comparison of feature tracks for HASTE-100,
HASTE-20 and RATE (t = 9.60, 9.80, 10.00 s)

blue arrow, representing the movement of a cluster of tracked
seeds in HASTE-100, differs significantly from ground truth.
This behavior was qualitatively attributed to a tracking delay
in HASTE-100, as 100 trackers can not be handled in real-
time in the setup of HASTE-100.

C. Quantitative evaluation

We quantitatively evaluated the number of trackers, real-
time performance, feature distribution, tracking errors, and
lifespans in five methodologies - EKLT, Zhu’17, HASTE-
100, HASTE-20, and RATE - on the dataset “bicycles”
spanning about 24 seconds. We analyzed the correlation
between the timestamp and the number of trackers per update
in each methodology, as illustrated in Fig. 7. The behavior
observed varies due to the different tracker initialization
frequency as described in Table I. In the original imple-
mentation, EKLT initializes tracking by employing Harris
corner detection only on the first frame with predefined
maximum number of detected corners of 100. This allows for
an initial configuration of up to 100 trackers at the beginning.
However, the number of trackers in EKLT drops to 0 within 5
seconds and does not recover due to the absence of feature
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Fig. 7: Evolution of number of trackers with time in each
method. The range, which was utilized to evaluate real-time
performance, covers a 3σ deviation of the number of trackers
in RATE.

TABLE II: Real-time performance evaluation based on RT-
ratio, the ratio between total actual and processing time (lim-
ited to intervals where tracker count is within the evaluation
range indicated by dashed lines in Fig. 7 for fair comparison)

Method Total actual time [s] Total processing time [s] RT-ratio Real-time
EKLT 0.93 5.58 5.99 No
Zhu’17 9.47 511.46 53.99 No

Ours: RATE 23.39 3.87 0.17 Yes

re-detection in the EKLT code. For Zhu’17, trackers were
initialized by creating a frame of accumulated events from
the first 0.001 seconds and applying Harris corner detector
to it. The frame of accumulated events is generated by
counting the event occurrence in each pixel during the update
interval. Whenever the tracker count of Zhu’17 dropped
to 0, new trackers were re-initialized to a maximum of
100 by the same process. However, similar to EKLT, the
number of trackers in Zhu’17 also experienced significant
reductions within about 5 seconds shortly after each re-
initialization phase. For HASTE-100 and HASTE-20, new
trackers are re-initialized using the most recently detected
track seeds, whenever the number of trackers decreased from
the maximum value, i.e. 100 and 20 respectively, which
can happen due to features leaving the FOV of the camera.
Similarly, RATE initializes HASTE trackers by employing
the Shi-Tomasi corner detector at a fixed frequency of 30
Hz on a time slice of the SAE. However, when multiple
trackers occupy the same sub-image or the tracking quality
is evaluated as poor, redundant trackers are removed and
new trackers re-initialized with track seeds from the corner
detector node. This process is repeated continuously for each
event in the event stream at a high frequency. Consequently,
the tracker count increases gradually at the beginning and
stabilizes at approximately 20 until the end of the dataset.

With the results obtained from the evaluation of the
number of trackers, we analyzed the real-time performance

TABLE III: Real-time performance evaluation based on RT-
ratio over the whole sequence

Method Total actual time [s] Total processing time [s] RT-ratio Real-time
HASTE-100 23.45 31.78 1.36 No
HASTE-20 23.45 5.96 0.25 Yes

Ours: RATE 23.45 3.87 0.16 Yes

of each method by calculating the “RT-ratio”, defined as the
ratio of total processing time to actual time as shown in the
following Eq. (7),

RT-ratio =
Total processing time [s]

Total actual time [s]
. (7)

RT-ratios less than 1.0 indicate real-time processing. In
particular, as indicated by standard deviations of RT-ratios
greater than 100 (EKLT: 134.4, Zhu’17: 108.1, respectively),
both EKLT and Zhu’17 exhibited significant variations in RT-
ratios depending on the number of trackers (0 - 100) because
of the difference in tracker initialization frequency. To ensure
a fair comparison of processing times among EKLT, Zhu’17,
and RATE, we constrained both total actual and processing
times within the 3σ range of the number of trackers in
RATE, defined as “evaluation range” ([5.81, 29.59], mean
17.70), as shown in Fig. 7. As detailed in Table II, the
RT-ratios for EKLT and Zhu’17 exceed real-time constraints
(values > 1.0) with values of 5.99 and 53.99, respectively. In
contrast, the RT-ratio of RATE was 0.17, demonstrating the
achievement of real-time performance during operation. In
the case of HASTE-100, HASTE-20, and RATE, as shown
in Fig. 7, the number of trackers remains stable throughout
the tracking process. Consequently, we evaluated the impact
of the number of trackers on real-time performance by
comparing RT-ratios across these methods calculated without
any range limitations. Table III indicates that HASTE-20
and RATE can operate in real time due to sufficiently low
numbers of trackers, in contrast to HASTE-100. In summary,
the results concerning the number of trackers and real-time
performance confirmed that RATE successfully achieved
continuous, real-time event-based asynchronous tracking of
multiple features.

To evaluate the spatial distribution of trackers across the
entire field of view, we counted the number of sub-images
containing trackers as shown in Fig. 8. A comparison of three
graphs in Fig. 8 revealed that multiple trackers in HASTE-
100 and HASTE-20 were located within the same sub-image,
resulting in tracking of closely spaced features. In contrast,
all trackers in RATE were consistently positioned within their
respective sub-images due to the proposed tracking manager.
Therefore, these results indicate that RATE efficiently dis-
tributes around 20 trackers spatially, a similar number of
trackers as in HASTE-20.

We used the first 30 trackers in each methodology to
fairly compare average errors and lifespans because (i) the
timings of the first tracker initialization were the same,
and (ii) the number of trackers in Zhu’17 was initialized
to about 30 and did not recover until it reached 0. The
“rpg feature tracking analysis” [29] was selected as a KLT-
based tracking method on intensity frames to compute aver-
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Fig. 8: Number of sub-images with (a) at least 1 tracker,
(b) with 2 or more, and (c) with at least 5 trackers using
HASTE-100 (blue), HASTE-20 (orange) and RATE (green).
In contrast to HASTE-20 and HASTE-100, which can have
2 or more tracker per sub-image, RATE has at most 1 tracker
per sub-image, leading to a more evenly spread distribution
of trackers.

age errors and lifespans because of the absence of the ground
truth for feature tracking in the dataset [14]. Similar to [25],
good performance of the KLT tracker on intensity frames was
ensured by utilizing the dataset “bicycles” spanning about 24
seconds and the first 25 seconds of the dataset “boxes 6dof”
as they have less fast motion and motion blur compared to
other datasets. The results in Table IV reveal that event-
only methods, including RATE, exhibit significantly lower
performance in lifespan compared to EKLT, which uses both
frames and events for tracking. However, at least for the
dataset “boxes 6dof”, RATE achieves similar performance
in tracking accuracy as EKLT, indicated by the p-value of

TABLE IV: Average error and lifespan of tracked features
evaluated using the first 30 trackers, and p-values of t-Tests
between RATE and the others with alpha level of 5 %

Dataset “bicycles” (24 s)
Method Error Lifespan

Average [px] p-value [%] Average [s] p-value [%]
EKLT 0.67 5.20 × 10−12 1.50 1.84 × 10−8

Zhu’17 4.24 1.24 × 10−4 1.42 3.81 × 10−8

HASTE-100 4.23 3.44 × 10−6 0.60 1.52 × 10−11

HASTE-20 3.98 1.38 × 10−4 0.45 4.26 × 10−3

Ours: RATE 2.90 – 0.32 –

Dataset “boxes 6dof” (first 25 s [25])
Method Error Lifespan

Average [px] p-value [%] Average [s] p-value [%]
EKLT 0.83 83.4 1.38 4.49 × 10−1

Zhu’17 3.34 2.32 × 10−14 1.94 1.14 × 10−3

HASTE-100 1.98 1.91 × 10−4 2.76 2.29 × 10−8

HASTE-20 3.39 1.73 × 10−13 2.11 2.57 × 10−4

Ours: RATE 0.79 – 0.76 –

TABLE V: Sensitivity evaluation in RATE with different
thresholds and selection functions by using average error and
lifespan of tracked features of the first 30 trackers, and p-
values of t-Tests with alpha level of 5 %

Dataset “boxes 6dof” (first 25 s [25])
Threshold Eval. Error Lifespan

Eq. Average [px] p-value [%] Average [s] p-value [%]
0.1 (4) 0.79 – 0.76 –
0.5 (4) 0.68 56.9 0.59 30.1
0.02 (4) 0.61 30.0 0.76 100
0.1 (5) 1.70 4.27 × 10−2 1.22 5.01
0.1 (6) 1.62 7.94 × 10−2 1.17 7.13

more than 80 %. In addition, given that the p-values in
errors between RATE and other event-only baselines are
much smaller than 5 %, it is evident that RATE enhances
the tracking accuracy compared to the event-only baselines.
This improvement can be attributed to two main factors:
(i) the improvement of corner accuracy through PCA algo-
rithm during initialization, and (ii) the removal of poorly
performing trackers as illustrated in Fig. 4. On the other
hand, considering p-values in lifespans, the feature lifespan
for RATE was statistically significantly the shortest among
all methods. This can be explained by the fact that RATE
deletes bad trackers using Eq. (3) and selects only the tracker
with the best alignment score f for each sub-image in Eq. (4)
to enhance tracking accuracy and spatial distribution, as
depicted in Fig. 5.

Furthermore, we evaluated the sensitivity of parameters
in RATE by changing the selection function for evaluation 2
(see Fig. 4) and the threshold in Eq. (3) as shown in Table V.
The sensitivity of the threshold in Eq. (3) was considered
not to be strong because tracking errors and lifespans are
not significantly different according to the p-values in this
table. However, average lifespan was improved but tracking
accuracy significantly reduced with evaluation functions that
include the lifespan value, Eq. (5) and Eq. (6). These findings
indicate that RATE has the potential to optimize tracking
accuracy and lifespan by designing appropriate evaluation
functions.

Overall, the results in this section show that the pro-
posed RATE pipeline can stabilize the number of trackers



effectively, and thereby achieves real-time tracking, while
distributing features evenly over the FoV of the camera.
In addition, a modest improvement in tracking accuracy
has been observed compared to conventional event-only
baselines, despite the inherent trade-off between real-time
performance and accuracy.

V. CONCLUSIONS

We have introduced RATE, a continuous real-time capable
pipeline for asynchronous event-based tracking of multiple
features. Within this pipeline, the corner detector node,
incorporating the SAE, the Shi-Tomasi corner detector, and
a PCA-based selector, provides seeds for the initialization of
multiple HASTE trackers. The tracking manager node, con-
sisting of sub-images and a distributor minimizes redundant
HASTE trackers after asynchronous updates. Throughout all
experiments, the proposed pipeline maintained a consistent
number of trackers in real-time, while exhibiting similar or
slightly enhanced tracking accuracy compared to state-of-
the-art event-only tracking methods.

Future work includes implementing the advancements
proposed in this research within an event-driven VO architec-
ture. This application aims at vision-based self-localization
in real-world environments, particularly under challenging
conditions such as drastic lighting changes and fast motions.
In addition, hybrid approaches complementing events with
frames that can convey rich texture and color information
independent of motion, are very promising. For instance, they
can provide means to tackle one of the major challenges for
event-only methods, namely the re-detection of previously
used features, for which tracking was lost or that temporarily
moved out of the camera’s field of view.
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[26] Ö. Yılmaz, C. Simon-Chane, and A. Histace, “Evaluation of event-
based corner detectors,” Journal of Imaging, vol. 7, no. 2, 2021.

[27] R. Benosman, C. Clercq, X. Lagorce, S.-H. Ieng, and C. Bartolozzi,
“Event-based visual flow,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 25, no. 2, pp. 407–417, 2014.

[28] J. Shi and Tomasi, “Good features to track,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 1994, pp. 593–600.

[29] D. Gehrig, H. Rebecq, G. Gallego, and D. Scaramuzza, “Feature
tracking analysis,” 2019. [Online]. Available: https://github.com/uzh-
rpg/rpg feature tracking analysis


