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Abstract: In this study, we propose a novel method for detecting defects in concrete structures using the sound and force

signals from hammering tests. In recent years, the aging of concrete structures has become a significant issue for social

infrastructure. Hammering inspection is one of the most widely used non-destructive testing methods for detecting defects

in concrete. Although unsupervised methods for defect detection that do not require training machine learning models

have been proposed, they essentially only allow for the clustering of hammering sounds, without indicating whether the

clusters consist of healthy or defective hammering sounds. In this study, we propose a novel method to calculate the

likelihood of defects in each cluster. This method identifies defect clusters based on the characteristic that defect areas

generate higher sound energy during hammering tests. Experiments were conducted using multiple concrete specimens,

including those with delamination and void, to validate the proposed method. The proposed method was able to identify

defect clusters effectively and demonstrated high performance for defect detection.
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1. INTRODUCTION

In recent years, the aging of concrete structures, a cru-

cial part of social infrastructure, has become a significant

concern [1]. Incidents such as the collapse of the Morandi

bridge in Italy [2] and the Sasago tunnel in Japan [3]

highlight the urgency of addressing the deterioration of

concrete infrastructures. One non-destructive method of

inspection widely used to assess the condition of con-

crete is the hammering test, where concrete is struck and

the resulting sound is analyzed to gauge deterioration, as

shown in Fig. 2.

The hammering test has become widespread due to

its simplicity, yet the efficiency of inspections is increas-

ingly demanded due to the decreasing number of skilled

inspectors in developed countries, a consequence of an

aging population. Considerable research has been con-

ducted on using machine learning to automatically iden-

tify defects in concrete from the sounds produced during

hammering tests [4].

Several approaches using supervised learning for de-

fect discrimination have been proposed. These methods

require preparing specific features, such as the Fourier

spectrum of the hammering sound, and labels that indi-

cate whether the state is healthy or defective. The data

is then used to train classifiers, including Deep Neural

Networks [5] and Ensemble Models [6]. However, due

to variations in concrete composition and curing condi-

tions, the hammering sounds differ [7], necessitating on-

site training. Training defect discriminator requires a sub-

stantial amount of labeled hammering sounds by skilled

inspectors, which significantly increases their workload.

An alternative approach using transfer learning has

been suggested [8]. This method involves fine-tuning a

model trained under controlled condition at different sites

Fig. 1. An inspector conducting a hammering test.

or on concrete specimens to the conditions at the actual

site. However, this approach still requires labeled ham-

mering sounds for fine-tuning.

Consequently, an unsupervised approach that does not

require training a discriminator has been proposed [9].

This approach utilizes sounds and positions to perform

clustering of the hammering sounds. Furthermore, it

identifies the cluster with the largest number of data

points as the healthy cluster, based on the assumption that

the majority of hammering sounds collected during in-

spections are from healthy concrete. The challenge with

this unsupervised method is that it does not inherently re-

veal the attributes of the grouped data. For instance, if the

collected data contains more defect sounds than healthy

ones, or if multiple healthy clusters exist, this method [9]

may fail to identify defects.

Given these considerations, the development of an

unsupervised method for defect discrimination that can

identify defects even when there are fewer healthy ham-

mering sounds or multiple healthy clusters, and does not

require labeling at the inspection site, is extremely im-

portant yet has not been realized. Therefore, the objec-

tive of this study is to develop an unsupervised method

for defect discrimination capable of identifying defective



Fig. 2. Overview of the proposed method.

clusters. To address this challenge, we propose a novel

method that calculates the likelihood of defects for each

cluster based on the characteristic that defect areas pro-

duce higher sound energy during hammering tests.

2. PROPOSED METHOD

2.1 Concept

The defects targeted for detection in hammering tests

are voids within concrete, such as delamination and

spalling, caused by concrete deterioration. When voids

exist without being filled, they generate unique vibra-

tion modes depending on the size and shape of the void.

Therefore, regions with defects are more likely to excite

vibrations [10], resulting in larger acoustic energy during

hammering compared to healthy regions. In this study,

we propose a method that calculates the likelihood of de-

fects for each cluster based on the characteristic that de-

fect areas produce higher sound energy during hammer-

ing tests.

The energy of hammering sounds depends not only on

the internal state of the concrete but also on the strength

of the impact. To address this issue, we use an impact

hammer equipped with a force sensor to measure the en-

ergy of the impact. In this study, we propose Acoustic

Energy per Impact (AEI), normalized by the energy of

the impact. On the other hand, compared to the AEI,

the frequency features of the hammering sound are more

robust and have been widely used in previous research

[11], [12]. Therefore, we propose a method that com-

bines AEI with frequency features to accurately perform

clustering while enabling the calculation of defect likeli-

hood for each cluster.

Overview of the proposed method is shown in Fig. 2.

Initially, through measurements using a microphone and

force sensor, sets of sound and force signals are acquired.

The proposed method consists of two processes: one for

processing acoustic features and another for processing

the AEI.

In the processing of acoustic features, clustering is

performed based on the characteristics of the hammer-

ing sound. In the processing of AEI, AEI is used to cal-

culate the defect probability for each hammering within

the clusters formed by the acoustic features. Finally, the

Fig. 3. Diagram of the time series signals of sound and

force in hammering tests.

clusters are identified as healthy or defective based on the

average of defect probability within each cluster.

2.2 Acoustic Energy per Impact

Figure 3 shows diagram of the time series signals of

sound and force in hammering tests, where v1 is the ve-

locity just before the hammer head collides, v2 is the ve-

locity just after the collision, r is the distance from the

hammering position to the microphone, a(t) is the ampli-

tude of the sound pressure and f(t) is the force, at time t,

respectively. In the hammering test, strikes are generally

performed perpendicular to the surface, so the velocity of

the hammer is considered only in the component that is

perpendicular to the surface.

First, to determine the energy Eimpact imparted to the

concrete by an impact, we can use the law of energy con-

servation, the law of momentum conservation, and the

coefficient of restitution e:

Energy conservation: Eimpact =
1

2
mv2

1
−

1

2
mv2

2
, (1)

Momentum conservation:

∫

f(t)dt = m(v2 − v1), (2)

Restitution coefficient: e =
v2

v1
, (3)

where m is the mass of the hammer head.

By eliminating v1 and v2 from these equations and ap-

proximating e as constant, we find that Eimpact is propor-

tional to the square of the impulse:

Eimpact ∝

(
∫

f(t)dt

)2

. (4)



Next, we determine the acoustic energy generated by

the concrete Eacoustic . Appoloximating that the distance

between the microphone and the hammering position r is

constant, Eacoustic is proportional to the acoustic energy

picked up by the microphone, Emicrophone. Furthermore,

Emicrophone is proportional to the square of the amplitude

of the sound pressure a(t):

Eacoustic ∝

∫

a(t)2dt. (5)

In regions with voids, such as defects, the energy im-

parted to the concrete by the impact is more easily con-

verted into vibration and the resulting acoustic energy.

Therefore, we define AEI as the ratio of the acoustic en-

ergy generated by the concrete Eacoustic to the energy im-

parted to the concrete by the impact Eimpact:

AEI =
Eacoustic

Eimpact

∝

∫

a(t)2dt
(∫

f(t)dt
)2

. (6)

2.3 Processing of Acoustic Feature

In the processing of acoustic features, the first step in-

volves eliminating variations in striking force and nor-

malizing the energy of each hammering sound to extract

its acoustic characteristics. Next, a Short-Time Fourier

Transform (STFT) is performed to extract the time-

frequency domain features of each hammering sound.

STFT is a common feature in machine learning for audio

signals, and the frequency-decomposed signals facilitate

feature recognition.

However, the high-dimensional features transformed

by STFT can reduce clustering accuracy due to the phe-

nomenon known as the concentration of measure [13].

To address this issue, Uniform Manifold Approximation

and Projection (UMAP) [14] is used to embed high-

dimensional features into a lower-dimensional space.

UMAP is a dimensionality reduction technique noted for

its excellent balance in maintaining both local and global

structures, and has recently gained attention in the field

of machine learning. Another significant advantage of

dimensionality reduction is that it greatly facilitates the

interpretation of clustering results through visualization,

thus simplifying the verification of system integrity and

manual tuning of hyperparameters.

On the other hand, in the embedding space of UMAP,

clusters of irregular shapes tend to form. Clustering

methods with constraints on cluster shapes, such as k-

means or Gaussian Mixture Models, struggle to ade-

quately cluster such data groups. Therefore, this study

employs Hierarchical Density-Based Spatial Clustering

of Applications with Noise (HDBSCAN) [15] for clus-

tering. HDBSCAN is a density-based clustering method

that can form clusters of flexible shapes.

Conversely, Clustering merely groups similar ham-

mering sounds and cannot identify which clusters are de-

fective. Therefore, we propose a identification method

for defect clusters based on AEI.

2.4 Processing of AEI

AEI is easy to calculate from only force and acoustic

signals by Eq. (6), making it highly convenient and suit-

able for automated inspection scenarios. However, be-

cause there are factors that influence the magnitude of the

AEI, relying solely on threshold processing of the AEI

to discriminate between defects and healthy conditions

lacks reliability. These influencing factors include varia-

tions and diversity in the angle of hammering, the coeffi-

cient of restitution, the distance between the microphone

and the hammering position, the environment of sound

reverberation, and acoustic noise at inspection sites.

Hence, there are many factors influence the magni-

tude of AEI, with uncertainties and unknown variations

overlapping. This overlapping is termed process noise,

and assuming it linearly combines, it can be hypothesized

from the central limit theorem that process noise follows

a normal distribution.

Therefore, AEIs are fitted using Gaussian Mixture

Model (GMM). In GMM, the probability distribution

p(x) of the feature x is represented as a linear combi-

nation of normal distributions N :

p(x) =

K
∑

k=1

πkN(x|µk, σk), (7)

where, K is the number of normal distributions, and πk,

µk, and σk represent the mixture coefficient, mean, and

standard deviation of the k-th distribution, respectively.

The parameters of each normal distribution–πk, µk, and

σk–are optimized by maximizing the log-likelihood us-

ing the EM algorithm. Additionally, since the number of

normal distributions K is unknown, the optimal K is de-

termined by using a grid search to minimize the Bayesian

Information Criterion [16].

Since a healthy hammering sound has a lower AEI, the

normal distribution with the smallest µk is designated as

the healthy one. Therefore, the probability of a defect for

data with feature value x is calculated as follows:

Defect Probability = 1−
πiN(x|µi, σi)

p(x)
, (8)

i = argmin
k

µk. (9)

Using the defect probability calculated by AEI, identi-

fication of defect clusters formed by sound characteristics

is conducted. The average defect probability within each

cluster is calculated, and clusters where this average ex-

ceeds 0.5 are identified as defect clusters.

3. EXPERIMENT

3.1 Experimental Setup

To validate the effectiveness of the proposed method,

experiments were conducted. An impact hammer was

used to strike both the healthy and defective areas of

concrete specimens, and the force and acoustic signals

obtained were used for defect discrimination. Figure 4



Fig. 4. Schematic of the concrete specimens used in the experiment, with all distances in mm. Their body size are the

same and the artificial defects are shown in red.

Fig. 5. Setup of experimental equipments.

shows the concrete specimens used in the experiments,

which included artificial defects. The concrete was uni-

formly struck, obtaining 400 samples of healthy sounds

and 600 samples of defective sounds from each specimen.

Additionally, the experimental setup was arranged as

shown in Fig. 5. A microphone (PCB model 377B02)

was mounted on a stand to capture the hammering sounds

generated by the impact hammer (PCB model 086C03),

which can measure force in only one axis, and the sounds,

along with force signals, were recorded simultaneously

using a data logger (MC model DT9837B).

3.2 Parameter Setting

The sampling frequency was set at the maximum limit

of the data logger, 100 kHz, with the measurement du-

ration for force signals at 5.12 ms (512 samples) and for

audio signals at 40.96 ms (4096 samples). The window

size for the STFT was 256 samples, with an overlap of

128 samples, and a Hamming window was used as the

window function. The dimensionality of UMAP was set

to two dimensions. The hyperparameters for HDBSCAN,

namely the minimum cluster size and the minimum num-

ber of samples Sm, were set to the same value.

HDBSCAN includes a parameter called the minimum

number of samples Sm, which implicitly specifies the

Fig. 6. Histogram and KDE of AEI for ground truth. The

dashed black line represents the AEI threshold when the

defect probability reaches 0.5. AEI is significant in terms

of relative magnitude, therefore, the smallest value in the

collected data is set as the baseline 0 dB.

number of clusters. In this study, to simplify the param-

eter settings, Sm was determined through grid search to

maximize the accuracy of defect discriminaton and was

set at 64.

4. RESULTS

To verify the effectiveness of the proposed method

when there are more defect sounds than healthy ones, we

collected a total of 3400 samples—400 healthy sounds

and 600 defective sounds from each type of concrete,

amounting to 400 × 4 + 600 × 3. We then evaluated

the performance of defect discrimination based on these

3600 samples.

The histogram and Kernel Density Estimation (KDE)

of the AEI calculated from the collected data are shown in

Fig. 6. Although there is some overlap between the distri-

butions of healthy and defective samples, they are clearly

separated. This demonstrates that the AEI is useful in dis-

tinguishing between healthy and defective states in con-

crete, and it aids in identifying defect clusters among the

clustered acoustic features.

Table 1 shows the performance of defect discrimina-

tion when using only the defect probability calculated

from AEI versus the proposed method that combines AEI

and acoustic features. Given that the methods evaluated



Table 1. Performance metrics with mean ± standard deviation for each method. The threshold of AEI is set to the value

where the defect probability in Eq. (8) reaches 0.5 .

AEI Threshold Proposed Method Proposed Method (w/o STFT) Proposed Method (w/o UMAP)

Accuracy 0.895± 0.003 0.973 ± 0.021 0.485± 0.136 0.594± 0.066
Precision 0.863± 0.009 0.952 ± 0.044 0.333± 0.221 0.535± 0.088

Recall 0.897± 0.004 0.988 ± 0.003 0.358± 0.300 0.436± 0.138
F1 Score 0.880± 0.003 0.969 ± 0.023 0.337± 0.245 0.471± 0.104

(a) Ground truth, where healthy and defective points are plotted in green

and pink, respectively, and the style of the points varies according to the

type of concrete.

(b) Result of clustering, where the index of each cluster and defect prob-

ability are shown in the legend. Points of data identified as noise are

assigned a cluster index of -1.

Fig. 7. Scatter plots of the embedded space for hammer-

ing sounds.

are sensitive to initial parameter settings, we conducted

each method 32 times with varied initial values to en-

sure a comprehensive evaluation. The proposed method,

which combines AEI and acoustic features for defect

discrimination, demonstrated superior performance com-

pared to methods using only AEI and versions of the pro-

posed method with some features omitted.

An example of the clustering results obtained with the

proposed method is shown in Fig. 7. Even in cases where

multiple healthy clusters exist or there are more defect

sounds than healthy sounds, the proposed method is able

to identify healthy and defective clusters. However, in

cases of concrete with void and concrete with 30 degrees

delamination, the clusters for defective and healthy con-

ditions are located in close proximity, and there is some

mixing between them. This is due to the acoustic features

being similar near the boundaries between defective and

healthy areas of the concrete where the hammering oc-

curs.

Fig. 8. Clustering results and F1 score representing per-

formance of defect discrimination when changing Sm

(the parameter that implicitly specifies the number of

clusters for HDBSCAN). The results are plotted with dif-

ferent colors for each cluster. When Sm=10, 81 clusters

were formed.

5. DISCUSSION

Figure 8 presents the clustering results and F1 scores

when the parameter Sm is varied extremely. When Sm

is too large, the clusters for healthy and defective con-

ditions merge into a single cluster, leading to incorrect

discrimination of healthy and defective states and result-

ing in a low F1 score. Conversely, when Sm is too small,

although the clusters for healthy and defective conditions

are well separated, the averaging of the defect probability

calculated by AEI is insufficient, also resulting in a low

F1 score.

In clustering methods, there is always a hyperparam-

eter, implicit or explicit, that determines the number of

clusters as in the case of Sm in HDBSCAN. This hy-

perparameter significantly influences the performance of

clustering, hence it requires careful adjustment. There

are methods for determining the number of clusters using

performance metrics such as information criteria or sil-

houette scores. However, due to the diversity of data and

the characteristics of these metrics, their application can

be challenging.

Setting parameters to maximize accuracy using ground

truth, as in this study, compromises the benefits of unsu-

pervised methods that do not require labeled data. There-

fore, it may be necessary to combine this approach with

weakly-supervised methods, such as those proposed by

Louhi et al. [17], where instead of identifying each ham-

mering sound as defective or healthy, only a simple and

low-burden human judgment about the similarity inter-

venes, based on the representative sound of the cluster.

For example, it is conceivable that inspectors could lis-

ten to representative hammering sounds from each cluster



and adjust the number of clusters by consolidating them.

6. CONCLUSION

In this study, we proposed a novel unsupervised

method for defect detection that identifies defect clusters

in hammering inspections. Based on the characteristic

that striking defect areas produces higher sound energy,

we developed a method to calculate the likelihood of de-

fects for each cluster. To validate the applicability of the

proposed method, we used four types of concrete spec-

imens, including those with delamination and void de-

fects, in our experiments.

The proposed method demonstrated high performance

for defect discrimination and the ability to identify de-

fective clusters. Future work should focus on automating

the setting of clustering parameters and enhancing perfor-

mance by integrating weakly-supervised methods [17].

By involving only a simple and low-burden human judg-

ment in the process, such as listening to representative

hammering sounds from each cluster, inspectors could

potentially refine the clustering results and improve de-

fect detection accuracy.
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