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Abstract: Spherical images have a wide field of view and are effective for pose estimation, but they have the problem of
inherent distortion. Existing methods to reduce the effects of distortion significantly increase computation time and cannot
be used for real-time applications. We propose a method that enables accurate and fast feature point-based two-view
pose estimation using spherical images by reducing the effect of distortion in equirectangular images. In our approach,
one image is generated by rotating an equirectangular image, and feature point detection and descriptor extraction are
performed from the two images: the original image and the generated image. The information is then integrated by
adopting the least distorted regions of the two images. Our approach works faster than existing distortion reduction
methods because of the small number of projection planes. In experimental evaluation, it was shown that our proposed
method is faster and equally accurate compared to state-of-the-art methods in pose estimation.
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1. INTRODUCTION

Pose estimation is a technique to determine one’s posi-
tion in a 3-D space. Enhancing the accuracy and speed of
pose estimation contributes to the automation of move-
ment in applications such as autonomous vehicles and
robotic systems. In pose estimation, Global Navigation
Satellite System (GNSS), Light Detection and Ranging
(LiDAR) and cameras are mainly used. However, GNSS
faces challenges in environments where satellite signals
are obstructed, such as in indoors or forests [1]. Addi-
tionally, LiDAR is vulnerable to strong light conditions
and adverse weather [2]. Cameras can provide valuable
information even in environments where GNSS and Li-
DAR are ineffective, making camera-based pose estima-
tion methods a complementary or alternative approach to
those based on GNSS and LiDAR. Among camera-based
pose estimation methods, feature-based approaches are a
powerful option in resource-limited situations due to their
lower computational costs.

In feature-based pose estimation, increasing the field
of view enhances the accuracy of the estimation [3].
Therefore, using cameras that can capture a wide range
can potentially lead to more accurate self-localization.
Spherical cameras, with a 360-degree field of view, can
capture information from all directions in a single shot.
However, when images captured by a spherical camera
are projected onto a flat surface to apply conventional
image processing techniques, peculiar distortions occur.
The difference between a conventional image and an
equirectangular image is shown in Fig. 1. While equirect-
angular images can encapsulate a 360-degree view in a
single image, images becomes significantly distorted to-
wards the upper and lower parts [4]. Due to these dis-
tortions, using standard image processing techniques for
pose estimation can lead to decreased accuracy [5].

Fig. 1.: Comparison of conventional and spherical cam-
eras

There are some studies on reducing the effects of dis-
tortion in spherical images. One of the simplest meth-
ods to reduce distortion is the cubemap, which projects a
spherical image onto a cube [6]. However, this method
has the problem that the image becomes discontinuous at
the boundary of each face of the cubemap, making it dif-
ficult to acquire appropriate information in the area near
the boundary. [4] has proposed tangent plane projection,
which effectively reduces distortion in spherical images
more than cubemap. However, this method also increases
the computational time for feature point detection and de-
scriptor extraction, compromising real-time performance.
[7] has proposed a method that involves rotating equirect-
angular images by 0 degrees, 60 degrees, and 120 degrees
to facilitate feature point detection and extraction in areas
with minimal distortion. However, this approach disrupts
the continuity at the equirectangular image’s left and right
edges.

An alternative method for addressing distortion in-
volves directly processing spherical images [8–10]. This



Fig. 2.: Overview of proposed method

strategy is beneficial as it obviates the need to convert
images into equirectangular or other formats. However,
considering that learning-based methods have performed
well in matching tasks with perspective projection images
[11–13], there is room for improvement in accuracy over
these heuristic approaches.

Therefore, we newly propose a method that enables
accurate and fast pose estimation using spherical images
by reducing the effect of distortion in equirectangular im-
ages.

2. PROPOSED METHOD

Where a spherical image is represented by a rectangu-
lar image, the image has a peculiar distortion. Notably,
as one approaches the top and bottom of the image, these
distortions become more pronounced, leading to several
challenges during feature point detection and extraction:
• Due to distortions in spherical images, points that are
not typically detected as feature points in conventional
images are detected as feature points.
• The extraction of feature descriptors is adversely af-
fected by these distortions, thereby reducing the accuracy
of feature point matching.
• Although projecting spherical images onto the tangent
plane of the polyhedron can mitigate these distortions, it
significantly increases computational time.

Equirectangular images, while offering a wide field of
view, become more distorted towards the top and bottom.
Feature point detection and extraction accuracy are de-
graded in areas of severe distortion. To address these
challenges, our method leverages the characteristic of
equirectangular images where distortion decreases closer
to the equator of the image.

Our proposed method achieves distortion reduction
using fewer projection planes compared to existing ap-
proaches, thereby accelerating the process.

2.1 Overview of the Proposed Method
The proposed method effectively mitigates the effects

of distortion by rotating the equirectangular image in 3-D
space and performing a single projection. An overview of
the proposed method is illustrated in Fig. 2. Initially, the
coordinates on the equirectangular image are converted

Fig. 3.: Correspondence between 3-D Cartesian coordi-
nates and equirectangular image coordinates

into spherical coordinates. These spherical coordinates
are then rotated and converted back into equirectangular
image coordinates. This transformation is applied to the
image to generate a rotated image of the original image.

Subsequently, feature point detection and descriptor
extraction are performed on both the original and the gen-
erated images. The coordinates of feature points detected
in the generated image are transformed to the coordinate
system of the original image. Finally, feature points from
areas of the original image with small distortion are re-
tained, while feature points from areas of high distortion
are replaced with those from the generated image. This
technique allows for rapid and effective reduction of dis-
tortion impacts on feature point detection and descriptor
extraction in equirectangular images.

2.2 Generation of a new equirectangular image with
rotated viewpoint

The relationship between the coordinate system of
equirectangular images and the 3-D Cartesian coordi-
nate system is illustrated in Fig. 3. The coordinates
from equirectangular images can be converted to the 3-
D Cartesian coordinate system using the following equa-
tion:

pcar =

xy
z

 =

sin πu
h sin πv

h
cos πu

h sin πv
h

cos πv
h

 . (1)

Conversely, the coordinates from the 3-D Cartesian co-
ordinate system can be converted back to the equirectan-
gular image coordinate system using the following equa-



Fig. 4.: Generation of a new equirectangular image with rotated viewpoint

Fig. 5.: Feature point detection and descriptor extraction
of two images

tion:
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Here, a point peq = (u, v)T on the equirectangular image
is mapped to pcar in the 3-D Cartesian coordinate system.
Given that the image’s vertical and horizontal resolutions
are denoted as h and 2h respectively, the ranges of u and
v are defined as 0 ≤ u ≤ 2h− 1 and 0 ≤ v ≤ h− 1.

Then, considering the aforementioned relationships,
the transformation of equirectangular images into 3-D
Cartesian coordinates is computed. The image is sub-
jected to sequential rotations around the yaw and pitch
axes by π

2 as depicted below:

RY(ϕ) =

 cosϕ 0 sinϕ
0 1 0

− sinϕ 0 cosϕ

 , (3)

RZ(θ) =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 . (4)

The rotated equirectangular image Ir is then obtained
by applying Equation (2). An illustration of the process
of rotating a spherical image in 3-D space and outputting

Fig. 6.: Integration of feature points of two images

an equirectangular image is shown in Fig. 4. This opera-
tion allows for the mapping of pixels from the peripheral
areas of the original image Io to the central regions of the
equirectangular image.

2.3 Feature Point Detection and Coordinate Inversion
Feature point detection and descriptor extraction per-

formed on both Io and Ir are illustrated in Fig. 5. In our
proposed method, feature point detection and descriptor
extraction are carried out on these images using conven-
tional image processing techniques.

Subsequently, the feature point coordinates obtained
from Ir undergo a transformation. Initially, the coordi-
nates on the equirectangular image are converted into 3-
D Cartesian coordinates using Equation (1). Then, the
coordinates are subjected to sequential rotations of −π

2
around the yaw, pitch, and yaw axes, as defined by Equa-
tions (3) and (4). This procedure allows for the transfor-
mation of feature point coordinates back to their positions
in Io.

2.4 Filtering of Feature Points
As discussed in Section 2.3 , performing feature point

detection on both Io and Ir can result in multiple detec-
tions of the same point in 3-D space, which diminishes
the accuracy of matching. To address this issue, our



Fig. 7.: Qualitative keypoint matches: The green lines indicate matches that were classified as inliers by RANSAC. The
feature detection method employed is SuperPoint. Mean Time FP is mean time to detect feature points.

method applies a filtering process using the equirectan-
gular image coordinates.

Feature point filtering in our proposed method is illus-
trated in Fig. 6. Here, kh and kw are the proportionality
constants that determine the size of the cropped area rel-
ative to the original image dimensions. Feature points
located around the center of Io retain their original fea-
tures and descriptors, while those outside this central area
adopt the features and descriptors from Ir.

3. EXPERIMENT

3.1 Experimental Setup
To validate the effectiveness of the proposed method,

we performed two-view pose estimation using pairs of
equirectangular images. The experiment was conducted
as follows:
1. Feature detection and extraction: we applied both ex-
isting and proposed methods to preprocess equirectan-
gular images. Then, features are detected and extracted
from the preprocessed images using existing methods,
followed by feature point matching.
2. Pose estimation using the eight-point algorithm: the
matched features were used to estimate the pose using the
eight-point algorithm [14]. During this process, SK non-

linear optimization [15] and the Random Sample Con-
sensus (RANSAC) algorithm [16] were employed to mit-
igate the impact of outliers.
3. Accuracy evaluation: the rotation matrices and trans-
lation vectors were calculated, and their accuracy was
evaluated using the Mean Absolute Error (MAE). Addi-
tionally, the calculation speed was assessed based on the
feature detection and matching times.

For the pose estimation, the relative pose was calcu-
lated as rotation matrices and translation vectors from the
feature point matching results. The angular rotation error
θrot was defined as below:

θrot = arccos (
trace(RT

1 R2)− 1
2

), (5)

where R1 and R2 ∈ SO(3) are rotation matrices. Sim-
ilarly, the angular translation error θtrans was defined as
below:

θtrans = arccos

(
t1 · t2

∥t1∥∥t2∥

)
, (6)

where t1 and t2 ∈ R3 are transration vectors.
In the experiment, the proportionality constants kh and

kw mentioned in Section 2.4 were set to 2
3 and 7

8 , respec-
tively. We compare the proposed method with a method



Table 1.: Two-view pose estimation: We report the mean time to detect feature points (Time FP), mean time to match
feature points (Time MC), mean number of feature points (NUM FP), mean absolute error of rotation (R MAE) and mean
absolute error of translation (T MAE). Here, the units for Time FP and Time MC are seconds (s), while the units for R
MAE and T MAE are degrees (deg).

Overall Indoor Outdoor
Method Time FP Time MC Num FP R MAE T MAE Num FP R MAE T MAE

SIFT 0.0862 0.0134 1869 9.82 18.9 2704 10.4 23.8
tSIFT 0.567 0.00979 1078 8.13 10.3 1696 5.80 15.7
pSIFT 0.150 0.0107 1739 7.44 11.7 2660 7.12 18.2
ORB 0.0432 0.0558 7314 15.3 27.7 8387 18.6 43.8
tORB 0.223 0.0329 5527 9.24 15.4 6618 9.73 23.3
pORB 0.0736 0.0627 7999 12.7 21.2 9242 10.5 27.5

SuperPoint 0.0850 0.0164 1491 7.77 11.0 2190 9.43 16.2
tSuperPoint 0.506 0.0117 815 6.49 8.17 1221 7.53 14.1
pSuperPoint 0.148 0.0125 1348 5.86 8.11 2054 7.47 11.5

that detects feature points directly from equirectangu-
lar images without distortion correction and a method
that uses tangent plane projection [4]. Furthermore, the
combination of the k-nearest neighbors and Lowe’s ratio
method [17] are used for feature matching.

In this study, we adopt several feature detection meth-
ods, including Scale-Invariant Feature Transform (SIFT)
[17], Oriented FAST and Rotated BRIEF (ORB) [18],
and SuperPoint [11]. SIFT and ORB are implemented
in OpenCV, and SuperPoint is implemented by a open
source1.

The experiments were conducted on Ubuntu 20.04.6
LTS, equipped with a 12th Gen Intel® Core™ i9-12900
processor, 64GB DDR4 memory, and an NVIDIA RTX
A4500 GPU.

The dataset [5] used for the experiments consisted of
a total of 900 image pairs generated from 9 virtual en-
vironments, which were constructed with open source 3-
D modeling software such as Blender2 and UnrealCV3.
The ground truth for rotation and translation was pre-
determined during the image generation process. The res-
olution of the images was 1024× 512.

3.2 Results and Discussion
Examples of the matching results for pose estimation

between two viewpoints are shown in Fig. 7. These fig-
ures demonstrate that our proposed method increases the
number of inliers in both indoor and outdoor scenes.

The quantitative evaluation of the pose estimation be-
tween two viewpoints is presented in Table 1. The exper-
imental values derived directly from the equirectangular
images are denoted as SIFT, those detected using the tan-
gent plane projection method [4] as tSIFT, and those us-
ing our proposed method as pSIFT.

In terms of computation time, when using the pro-
posed method, the time required for feature point detec-
tion and descriptor extraction was approximately twice
and 0.3 times that required when using the tangent plane

1https://github.com/rpautrat/SuperPoint
2https://www.blender.org/
3https://unrealcv.org/

projection method and methods without distortion re-
duction, respectively. Moreover, the computational ef-
ficiency of the proposed method can be further improved
by omitting feature point detection in regions excluded
from the filtering process, as outlined in Section 2.4 .
Additionally, there is no significant variance in feature
matching time between the methods.

When using SIFT/SuperPoint, the number of feature
points detected is ordered as follows: the equirectangular
image, the proposed method, and tangent plane projec-
tion. The higher count of feature points in the equirect-
angular image is attributed to distortions that cause re-
gions, which are normally not identified as features in
conventional images, to be detected as such. Conversely,
when using ORB, the sequence is the proposed method,
the equirectangular image, and tangent plane projection.
The reason why the proposed method detects more fea-
ture points than the equirectangular image with ORB is
likely related to ORB’s correlation between the number
of pixels in the image and the number of feature points.

In terms of accuracy, ORB and SIFT generally achieve
higher precision than without distortion reduction and
lower precision compared to using the tangent plane pro-
jection method. On the other hand, the proposed method
achieves higher precision when using SuperPoint com-
pared to the tangent plane projection method. The com-
bination of SuperPoint and the proposed method consis-
tently resulted in the highest precision. Furthermore, the
accuracy of our proposed method can be enhanced by op-
timizing the determination of kh and kw in Section 2.4.

4. CONCLUSION

In this paper, we propose a method that enables accu-
rate and fast feature point-based two-view pose estima-
tion using spherical images by reducing the effect of dis-
tortion in equirectangular images. In our method, spher-
ical image is generated by rotating it in 3-D space, and
feature point detection and descriptor extraction are per-
formed on the original and generated images. By employ-
ing the information from the center of the two images,



information is obtained from the area where the effect
of distortion is relatively small. The proposed method
was evaluated on spherical image pairs dataset of indoor
and outdoor scenes. In experimental evaluations, the pro-
posed method achieved comparable pose estimation ac-
curacy as the tangent plane projection method while re-
quiring only about 30% of the computation time. As fu-
ture work, we aim to achieve further acceleration by re-
fining the filtering component of the proposed method.
Additionally, we will conduct more ablation studies to
evaluate the effectiveness of the proposed approach.
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