
  

  

Abstract— Most wire rope inspection work for construction 
machinery is performed manually at construction sites. 
Therefore, there are restrictions on the work environment, 
such as the equipment that can be used for inspection and the 
working time, and as a result, inspection results depend on the 
skill of the inspector. The purpose of this research is to develop 
a wire rope inspection system that is not affected by the work 
environment or worker skill. In this paper, we discuss a 
detection method using image processing technology for 
detecting wire breakage, which is one of the most serious 
damages to wire ropes. 

I. INTRODUCTION 

Wire ropes are widely used in the main structures of 
machinery and equipment used in construction sites for 
loading, unloading, and transporting. Examples are cranes 
and elevators, which are very large. Therefore, if a wire rope 
breakage, it can lead to a serious and large-scale accident, 
such as the collapse of a machine or the fall of a suspended 
load. When using such machinery and equipment, it is 
necessary to have the correct knowledge of wire ropes and to 
manage them correctly by regularly inspection them [1]. 

In the case of wire rope inspection work on cranes, in 
Japan, the wire rope is checked visually by field operators in 
accordance with the wire rope disposal standard and 
inspection manual provided by the Japan Crane Association. 
Table I. shows examples of inspection checklist. It is 
important to conduct daily inspections based on the standard 
to keep track of the presence or absence of damage and the 
state of deterioration. However, since most of these 
inspections are conducted manually and visually at 
construction sites, there are various restrictions on the work, 
and as a result, the inspection results depend on the skill of 
the operator. There is therefore a strong demand for 
automation of wire rope inspection. 

There are several non-destructive approaches to 
inspection of wire ropes [2]. The most populer method is the 
electromagnetic method. In this method, a magnetic field is 
generated by placing a magnetic sensor around the wire rope. 
At this time, at the point where the wire rope has a break, 
leakage magnetic flux is measured, and this feature is utilized 
to detect the break. Furthermore, by measuring the total 
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magnetic flux passing through the wire rope, cross-sectional 
defects caused by corrosion can be evaluated. Li et al. extract 
feature vectors from magnetic and infrared images and 
propose a method to solve broken wires classification 
problems using a kernel-based extreme learning machine 
network [3]. Xu et al. developed a sensor unit for wire rope 
inspection of cable-stayed bridges and verified its 
effectiveness in laboratory experiments [4]. A fundamental 
problem with this method is that the detected signal strength 
depends on the separation and relative speed between the 
wire rope and sensor. This is a major issue in terms of 
reproducibility of damage detection, and as a result, the 
accuracy of damage detection varies greatly depending on the 
operation of the wire rope during the inspection. Signal noise 
reduction is also an issue in all research. In addition, it is 
inherently difficult to completely link high signal strength to 
the presence of damage, so even if an abnormal signal is 
confirmed, the actual damage must ultimately be confirmed 
in the field. Other methods include the acoustic emission 
method, ultrasonic guided wave testing method, and 
radiography testing method. Li et al. conducted fatigue 
experiments using AE techniques on corroded bridge cables 
and showed AE characteristic parameters for fatigue damage 
[5]. Xu et al. have proposed a method to detect multiple 
breakage in the same wire of a prestressing wire using guided 
waves [6]. By using both low and high frequencies, they 
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were able to determine whether two single breakage in 
different positions are in the same wire or in different wires. 

Recently, image sensor and image processing techniques 
have been developed as an alternative to visual inspection. 
Approaches based on image processing techniques are the 
most appealing due to their ease of installation onto existing 
machinery. The study in [7], a wear detection method based 
on template matching is proposed for images of elevator 
traction wire ropes. The study in [8] employed a model-based 
approach with visual sensing by where a model of the 
inspected wire rope was matched against the captured image. 
Such an approach is conditioned by the adequacy of the wire 
rope model. A more general and common approach is to use 
object detection methods to recognize defects by posing the 
problem as one of classification [9]. However, the 
performance of such a classification model is conditioned by 
the quality of its training data and obtaining training data for 
defect classes is difficult since in practice defects do not 
occur often [10]. Zhou et al. proposed a wire rope damage 
detection method based on texture features [11]. The damage 
detection procedure consists of image filtering, scanning with 
the LBP operator, and dimensionality reduction with PDC in 
the preprocessing stage, followed by classification with 
multiple classification methods. As a result, the influence of 
each preprocessing and classification method on the 
diagnostic accuracy is mentioned. While the experiments are 
very detailed, the data set prepared seems to be limited. The 
actual damage is variable, and the methods that focus on 
damage characteristics are optimized for the training data, 
which is still a problem. Additionally, most of these methods 
are aimed at elevators and indoor overhead cranes. On the 
other hand, construction sites are a cluttered and varied 
environment. Therefore, each wire rope operates in an 
environment that can be considered unique, further 
compounding the challenges of an object detection approach 
to this issue.  

The purpose of this development is to develop a wire rope 
inspection system that is not affected by the work 
environment or the skill of the operator. In particular, we 
focus on image sensor/image processing technologies that are 
easy to handle, inexpensive, and enable easy understanding 
of inspection results. This paper on a detection method using 
image sensor and image processing technology for detecting 
wire breakage, which is one of the most serious damages to 
wire ropes. 

II. PROBLEM SETTLEMENT 

The following are the main issues to be addressed when 
applying the image sensor/image processing technology 
focused on in this research to wire rope inspection work at 
construction sites. 

A. Environment 
As mentioned above, most of the wire rope inspection 

work of construction machinery is performed in the field 
environment, so when selecting a measurement method, it is 
necessary to consider the harsh measurement environment, 
such as vibration of the machine itself caused when the 
construction machinery is in operation and blurring when the 
wire rope is in operation, especially when the measurement 
equipment is permanently installed. This is even more so 

when the measurement equipment is permanently installed. 
Slesarev et al. [12] shows an example of a wire rope 
condition monitoring system using magnetic sensors installed 
on drilling rigs. The authors point out the mechanical 
influence of the sensor on the rope, and state that the gap 
between the sensor and the wire rope should be reduced to 
increase the sensitivity to wire rope breakage, but that this 
reduces the robustness of the machine. As a result, the sensor 
is not able to be attached to the wire rope. As a result, the 
sensor is not permanently installed in the wire rope, but can 
be installed at each daily wire rope inspection. This indicates 
the limited installation locations of sensors and the low 
maintainability of the sensors, which may hinder their 
widespread use in general machines. Although there are still 
examples where sensor units are installed at each periodic 
inspection to replace visual inspections, this results in an 
increase in the cost of a single inspection. From this point of 
view, the image sensor focused on in this development is a 
non-contact sensor, so the mechanical influence pointed out 
by Slesarev et al. is expected to be small. Figure 1 shows the 
envisioned image sensor installation situation. 

B. Features of wire breakage 
Damage to wire ropes is not limited to wire breakage, 

which is the subject of this paper, but varies in type and 
degree, and it is difficult to extract and represent image 
features for such damage. Furthermore, it is difficult to 
collect many samples because wire breakage rarely occur in 
wire ropes in use (early replacement is performed based on 
daily maintenance and operating hours). Therefore, it is 
difficult to detect unknown damage that will occur in the 
future using, for example, a matching method that uses 
known wire breakage images as templates or an image 
classification method based on supervised learning. 
Therefore, the concept of the proposed method in this paper 
is to consider the features of the normal state of wire rope, 
and to define the abnormal state as the one with different 
features from the normal state. This eliminates the need to 
define the characteristics of the damage, and the proposed 
method is robust to detecting unknown damage. Given these 
features, this development aims to develop a method that can 
detect a wide range of damage states, with wire breakage as 
the primary target. 

Fig. 1    Image sensor installation situation 
  
  



  

III. METHOD 

A. Autoencoder 
To solve the problem described in the previous section, 

we examine a method for detecting broken wire using 
autoencoder. 

Autoencoder is a type of unsupervised deep learning, 
which is a convolutional neural network that learns to make 
the input and output layers identical. The network structure 
consists of an encoder part that compresses the input data 
once and a decoder part that reconstructs the output data to be 
the same as the input data. 

Figure 2 shows the concept of the method for detecting 
broken wire. First, in the learning phase, only normal 
(undamaged) wire rope images are used as input to learn 
features in the normal state. Next, in the prediction phase, an 
unknown wire rope image is input to the learned network, 
and reconstruction of the input image is attempted in the 
same way as in the learning phase. The reconstruction of the 
original image is possible when the input image is normal, 
and difficult when the input image is abnormal (damaged). 

In Fig. 2, the difference in luminance values for the same 
pixel in the input and output images is represented as a 
reconstruction error (value: 0~1), and the abnormal areas are 
visualized by the color map in the lower right of the figure. 
The green to red areas indicate a larger error (i.e., a higher 
degree of anomaly). 

B. Gabor filter 
As another method for detecting wire breakage, a method 

using local frequency features with a Gabor filter is 
considered. 

The wire rope structure is decomposed into wire rope, 
strand, and wire (the smallest unit) as shown in Fig. 3. The 
combination of wire and strand twisting can be classified into 
four wire types, and the wire of all wire ropes flows in a 

constant direction as shown in the figure. In the “right hand 
ordinary lay (sZ)” type wire shown in the figure, the wires 
are almost parallel to the rope axis (horizontal direction). If 
we focus on a wire region in the image, the spatial frequency 
intensity in the direction parallel to the wires in that region is 
low. Conversely, if the wire of interest has a break, there will 
be a discontinuous sequence of brightness, where the spatial 
frequency intensity will be higher than that of a normal wire. 
Figure 4 shows the result of calculating the spatial frequency 
intensity in the direction parallel to the wire in a normal 
image by convolving a Gabor filter (green square) orthogonal 
to the strand. The size of the wire rope image is 64 * 64 
[pixel] and the Gabor filter to be convolved is 11 * 11 [pixel]. 
The red areas on the right side of the figure indicate the 
higher intensity. Here, high spatial frequency intensity is 
observed at the strand boundaries, but not in the area where 
the wires are continuous. From the above, it is considered 
that when a local frequency feature is found in the wire 
region by the Gabor filter, it is judged that there is some kind 
of an anomaly. 

IV. EXPERIMENT 

A. Autoencoder 
The training conditions for detecting wire breakage using 

the autoencoder method are shown below (Fig. 5, TABLE  
II.). A total of 3,870 images were used for training, 
consisting of normal wire rope images obtained in the field 
and in the laboratory, as well as images obtained by color 
transformation (brightness, contrast, saturation, and hue), 
rotation, and left/right/up flipping. When input to the network, 
the images were resized to 64 * 64 pixels, converted to 
grayscale, and converted to a 1D tensor. The encoder layer 
performs dimensionality reduction in the order of 4096, 2048, 
and 1024, and the decoder layer reconstructs the images in 
the reverse order, resulting in a 64 * 64 pixels image as the 

Fig. 4    Feature extraction by Gabor filter 
 (left) Convolution using Gabor filter 

      (right) Red shows the boundary of the strand 
  
  

Fig. 3    Wire rope structure 
  
  

Fig. 2    Detection by autoencoder method 
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final output. The activation function is a ReLU function for 
the encoder layer, a sigmoid function for the decoder layer, 
the error function is the mean squared error (MSE), and 
Adam was used as the optimization method. The training was 
performed for 100 epochs. 

Figure 6 shows the validation results. From the left 
column, the input image, damage labels, and binarized error 
images (with threshold values of 0.2, 0.4, and 0.6, 
respectively) are shown. As representative examples, the top 
three disconnection images and the bottom wear image are 
shown. The ideal result is that the ground truth image and the 
error image coincide at any of the threshold values, and the 
threshold value at that time is the reference for inspection. 

However, in this verification, only wire breakage could 
not be detected with high accuracy at any of the threshold 
values. Here, we evaluate the binary classification 
performance of our method. Figure 7 shows the pixel-level 
classification performance evaluation using ground truth and 
reconstruction error in the input image in the top row of Fig. 

6. The histogram on the right shows reconstruction error on 
the horizontal axis and frequency on the vertical axis. Blue 
indicates the frequency of reconstruction error values in 
normal areas (label:0) of the ground truth image, and red 
indicates the frequency of reconstructions error values in 
anomaly areas (label:1). In general, when the binary 
classification performance is high, the blue and red 
histograms have separate peaks. However, this is not the case 
in the present results, and no matter what threshold is set for 
the reconstruction error, the binary classification performance 
is low. The same results were obtained for all input images in 
Fig. 6.  

These may be due to the fact that the network structure of 
the autoencoder is very simple, so reconstruction was not 
elaborate, and the reconstruction error of the input/output 
images was used as an indicator of normality/abnormality. As 
a whole, the results did not reveal only damage features that 
appeared only locally in the images. In addition, it may be 
difficult to separate the damage from noise (false detection 
points) in the error image because the wire breakage focused 
on in this paper are very minute in themselves. 

For comparison purposes, anomaly detection was 
performed using a Convolutional Autoencoder (CAE). The 
CAE extends the conventional autoencoder framework by 
incorporating convolutional layers into its architecture, 
enabling it to effectively capture spatial hierarchies and local 
patterns in the data. The training conditions were as follows: 
the input images were the same as those used earlier. The 
encoder consisted of three layers, which progressively 
reduced the dimensions of the input from 1 * 64 * 64 to 16 * 
32 * 32, and finally to 32 * 16 * 16. The decoder mirrored 
this structure, upsampling the dimensions in reverse order. 

Fig. 5    Autoencoder network structure 
  
  
  

Fig.7    Pixel-level classification performance 
  
  

Fig. 6    Anomaly detection result by Autoencoder 
(White : anomaly region) 

  
  



  

The activation functions are ReLU for the each encoder 
layers and the first two layers of the decoder, while a 
Sigmoid function was used in the final layer of the decoder. 
The error function employed was MSE, and Adam was used 
as the optimization method. The training was performed for 
100 epochs. 

The comparative results are shown in Fig. 8. Similar to 
the previously mentioned Autoencoder, the CAE failed to 
precisely detect only the anomaly regions, making it difficult 
to determine which approach was superior. Moreover, at a 
threshold of approximately 0.05, the anomaly regions 
(label:1) nearly disappeared, and the anomaly scores were 
approximately one order of magnitude smaller compared to 
the results obtained using the proposed method. This 
indicates that, despite not being trained on anomaly images, 
the CAE reconstructed the input data with relatively high 
precision. However, this also meant that the damaged regions, 
which were intended to be detected, were reconstructed too 
accurately, thus failing to achieve the primary objective of 
damage detection. 

However, when the error image for the bottom wear 
image is focused on, not only scattered anomaly (white) but 
also a coherent area of anomalies in the center of the image 
can be confirmed, which appears to match the area of wear 
scars that exist areal to areal in the input image. As an 
additional verification, we focused on connectivity in the 
image. Connectivity is a concept that defines a region in a 
binary image as a set of regions, which is a set of regions 
when there are identical pixel values around the pixel of 
interest. In this study, we focus on the 4-linkage component, 
which defines the linkage of the pixels above, below, left, 
right, and right of the pixel of interest. Figure 9 shows the 
results of the additional verification. After calculating the 
reconstruction error as described above, a binary error image 
was obtained by Otsu's binarization [13], and of the four 
connected components in the image, the one with the largest 
area was extracted (green rectangle). As a result, the 

extraction of areas close to the wear was generally successful. 
Additionally, the potential for detecting damage of a certain 
size, such as wear, was confirmed in the images. 

B. Gabor filter 

Verification was conducted to confirm the effectiveness 
of the method. The wire rope image was adjusted so that the 
rope axis was horizontal, and the Gabor filter shown in Fig. 4 
was used. Figure 10 shows the verification results. The two 
images on the left show the results of successfully detecting 
wire breakage in the area indicated by the green circle. The 
two images on the right show the results of missed and false 
detections, respectively. As a result, the autoencoder method 
succeeded in detecting a small number of wire breakage, 
which was difficult to detect with the previous autoencoder 
method. On the other hand, the missed and false positive 
results are considered to be caused by lighting conditions, oil 
and grease adhesion, and other factors. Future work is needed 
to minimize the effects of these factors. In this method, the 
direction of the strand and the direction of the Gabor filter 
must be orthogonal to each other. Since the purpose of this 
paper is to verify the effectiveness of the method for 
detecting wire breakage using a Gabor filter, the orientation 
of the input image was adjusted manually for verification. In 
order to perform continuous inspection of a large number of 
wire rope images in operation in the future, it is necessary to 
automatically perform the pre-processing for this purpose. 
The position adjustment method proposed by Zhou et al. [14] 
that combines segmentation and boundary recognition is 
effective for this purpose. 

V. CONCLUSION 
This paper describes a detection method using image 

processing technology for detecting broken wire in wire rope 

Fig. 10    Anomaly detection by Gabor filter 
              (a) Input image, (b) Detection result 

  
  

Fig. 9    Anomaly detection result by connectivity 
 
 

Fig. 8    Anomaly detection result by CAE 
(White : anomaly region) 

 
 



  

inspections of construction machinery. Since there are a 
variety of broken wire and it is difficult to define their image 
features, two detection methods using the features of normal 
wire rope images were investigated: detection by 
autoencoder and detection by Gabor filter. The former did 
not give good results in efficiently detecting only wire 
breakage. However, by considering the connectivity in the 
error image, good results were obtained for the detection of 
wear. The latter succeeded in detecting the very fine wire 
breakage that attracted our attention. This shows that it is 
possible to detect minute damage such as broken strands by 
using a simple image filter such as the Gabor filter used in 
this study alone, without much preprocessing of the input 
image. And, this paper also shows the possibility of 
detecting abrasion, which is one of the types of wire rope 
damage, by using the connectivity. 

In this research, the detection of wire breakage, which is 
the most critical damage for wire rope as described in this 
paper, is the most important issue, and we will continue to 
improve the detection method further in the future. In 
addition, we are investigating detection methods for other 
types of damage, with the aim of developing a robust 
inspection system that can be used even in a messy and 
varied environment such as a construction site. 
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