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Abstract: We propose a human-in-the-loop refinement framework that addresses the critical challenge of ensuring safe
and reliable LLM-driven multi-robot construction task planning through visual DAG-based verification and iterative re-
finement. The framework incorporates a Question-Answering (QA) LLM module to translate the operator’s natural lan-
guage instructions into a structured DAG representing atomic task dependencies. A Task Interface module presents the
generated task graph to the operator for inspection and feedback. Through interactive dialogue, the operator can iteratively
refine the task plan and intervene to prevent the execution of potentially unsafe actions. Experimental results demonstrate
that the framework enables real-time responsiveness and effectively blocks incorrect DAG task plans from being dis-
patched to the robot team. In error refinement evaluations using a public dataset, the Llama3.1-8B model required an
average of 1.42 dialogue turns to correct task dependency errors, whereas the GPT-4.1 model achieved error correction in
just 1.17 turns. Through the iterative refinement mechanism, the framework is capable of transforming initially erroneous
sub-tasks into safe and executable plans, enabling the reliable deployment of LLMs in multi-robot construction sites.
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1. INTRODUCTION

The construction industry is confronting a critical la-
bor shortage. Construction sites typically deploy numer-
ous machines, with traditional operational practices ad-
hering to a “one operator per machine” paradigm, lead-
ing to a linear increase in labor demand with the num-
ber of machines. In Japan, for instance, the proportion
of construction workers aged 55 and above has contin-
ued to grow, while the number of younger workers under
30 has declined significantly [1]. To address these chal-
lenges, enabling “single-operator, multi-machine” con-
trol for groups of construction robots has become a key
technological imperative to mitigate labor shortages and
enhance operational efficiency.

In the domain of multi-robot construction collabora-
tion, Saboia et al. proposed a distributed reactive con-
trol framework for heterogeneous robot teams [2]; Hart-
mann et al. developed a long-horizon multi-robot assem-
bly planning algorithm that integrates logic-geometric
programming with bidirectional spatiotemporal Rapidly-
exploring Random Tree (RRT) [3]; and Asani et al. im-
plemented a centralized task scheduling system for syn-
chronized transport of large components [4]. However,
these methods rely heavily on formalized task descrip-
tions and precise geometric parameters, rendering them
incapable of interpreting natural language commands and
limiting their responsiveness to dynamic or unexpected
situations.

The emergence of large language models (LLMs) of-
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fers a promising direction for overcoming these limita-
tions due to their powerful natural language understand-
ing capabilities. Zhang et al. developed a modular frame-
work that employs LLMs to construct collaborative em-
bodied agents, aiming to enable flexible and composable
multi-agent cooperation [5]. Chen et al. introduced a task
and motion planning approach based on an autoregressive
framework, where LLLMs function as both translators and
validators to enhance planning accuracy and robustness
[6]. Additionally, Chen et al. proposed a scalable archi-
tecture for multi-robot collaboration and compared cen-
tralized and decentralized systems under LLM guidance,
finding that none of the configurations could consistently
guarantee the success of LLM-generated task plans [7].
Kannan et al. explored direct code generation for robot
swarms using LLMs, but the resulting code frequently
exhibited syntactic and logical errors, undermining its re-
liability [8]. Wang et al. proposed a safe task planning
method that relies on LLM confidence thresholds to trig-
ger assistance in a passive manner. While this approach
improved task success rates, it did not allow the operator
to proactively and intuitively review, modify, or adjust
task plans in real time [9].

While previous studies have developed various LLM-
driven robotic planning methods, these systems lack
comprehensive safety validation mechanisms. In con-
trast, this work introduces a human-in-the-loop Di-
rected Acyclic Graph (DAG) refinement framework for
large language model (LLM)-driven multi-robot con-
struction task planning. As illustrated in Fig. 1, the pro-
posed framework decomposes natural language instruc-
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Fig. 1 Overview of the Human-in-the-Loop Multi-Robot Task Decomposition Framework. The left panel shows the task
decomposition system with LLM processing and human verification using DAG-based interfaces. The right panel
illustrates the ground embodiments executing approved tasks through ROS2 execution modules. The operator can
replan either before the Execution Modules execute their assigned tasks or afterward.

tions provided by the operator into a structured DAG-
based task dependency graph. A visual interface allows
the operator to inspect, validate, and refine task plans,
thereby ensuring their accuracy and executability. When
unexpected environmental changes occur, the operator
can dynamically adjust and refine task nodes through a
dialogue-based interface, enabling real-time adaptation.
The main contributions of this work are as follows:

1. A DAG-based method for LLM-driven decomposition
and visual verification of multi-robot construction tasks,
enabling structured modeling and safety validation of nat-
ural language instructions.

2. A human-machine interaction mechanism that sup-
ports dynamic adjustment when task plans require refine-
ment or correction, enabling real-time DAG reconstruc-
tion through iterative dialogue-based feedback, thereby
enhancing planning flexibility and execution reliability.

2. DAG-BASED TASK DECOMPOSITION
AND VERIFICATION

2.1. System Workflow Overview

Fig. 2 illustrates the temporal workflow of the sys-
tem’s task refinement procedure. The QA LLM module
initially receives high-level natural language instructions
from the operator and, incorporating environmental infor-
mation, the robot capability library, and few-shot exam-
ples, decomposes them into a sequence of atomic tasks
structured as a DAG. The Task Interface module subse-
quently transforms this list into a visualized task depen-
dency graph, allowing the operator to review task logic,
interdependencies, and execution order. If errors are de-
tected or modifications are required, the operator may in-
teract with the QA LLM module again, enabling the sys-
tem to iteratively refine the task decomposition based on
the dialogue history. Once confirmed, the operator trans-
mits the DAG-structured atomic task plan to the robot
swarm for execution via the Task Interface. It should be
noted that this iterative refinement process can be con-
ducted multiple times at any stage, both prior to and fol-
lowing task execution by the Execution Modules.

2.2. Task Decomposition in QA LLM Module

The operator provides high-level natural language in-
structions to the QA LLM module, which synthesizes en-
vironmental context (e.g., object names and locations),
the robot’s primitive capabilities, and few-shot learning
examples to decompose the instruction into a DAG of
executable atomic sub-tasks. These few-shot examples,
structured in JSON format, explicitly encode dependency
relationships, enabling the LLLM to understand and repli-
cate the DAG-based task decomposition paradigm. As
illustrated in Fig. 3, the dependencies field specifies the
directed edges among sub-tasks, constructing a coherent
execution graph that is forwarded to the Task Interface
module for operator verification and safety confirmation.

2.3. Visual Verification in Task Interface Module

To ensure the safety and executability of task plans
generated by the LLM, this paper presents a visual verifi-
cation interface, as illustrated in Fig. 4. The interface em-
ploys a graphical DAG representation that converts com-
plex task dependencies into an intuitive node-edge struc-
ture. Task nodes are color-coded based on their roles: red
for start tasks, orange for intermediate tasks, and purple
for terminal tasks, with directed edges clearly indicating
the dependency relationships. Each node is accompanied
by arectangular information panel that details the specific
execution steps, the types of robots involved, and the ob-
jects being manipulated. The operator can inspect task
details through the generated graphical DAG and refine
illogical tasks in real time via interactive dialogue.

3. EXPERIMENTAL EVALUATION

3.1. Validation of Dynamic Task Adjustment Capa-
bilities

A simulation experiment was conducted to evaluate
the dynamic task adjustment capabilities of the proposed
human-machine interaction framework. The simulation
environment was developed using Unity, and communi-
cation between the QA LLM module and the Task Inter-
face module was established via the ROS2 topic mech-
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Fig. 2 Temporal workflow of the human-in-the-loop DAG task refinement framework. The QA LLM module processes
natural language instructions and decomposes them into atomic tasks structured as a DAG, which is then visualized
by the Task Interface module for operator verification and iterative refinement through interactive dialogue.
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"instruction_function": {
"name": "<breakdown function 1>",
"dependencies":["<dep 1>", "<dep 2>",
., "<dep n>"]
},
"object_keywords": ["<key 1>", "<key 2>",
=; "<key n>"],
"instruction_function": {
"name": "<breakdown function 2>",
"dependencies":["<dep 1>", "<dep 2>",
, "<dep n>"]
},
"object_keywords": ["<key 1>", "<key 2>",
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"instruction_function": {
"name": "<breakdown function m>",
"dependencies":["<dep 1>", "<dep 2>",
, "<dep n>"]
},
"object_keywords": ["<key 1>", "<key 2>",
=l i <key n>*]
}

Fig. 3 JSON format specification for DAG-structured
task decomposition with dependency relationships
and robot-specific execution parameters generated by
the QA LLM module.
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Fig. 4 DAG visualization interface featuring color-coded
task nodes, dependency arrows, and real-time dia-
logue panel for human-in-the-loop task plan verifica-
tion and refinement.

anism. As shown in Fig. 5, the experimental scenario
includes an obstacle area referred to as a “puddle”, and

Table 1 Performance Comparison of Llama3.1-8B and
GPT-4.1 Models in DAG Task Dependency Error

Correction
Model Avg. Number of Correction Rounds  Success Rate (%)
Llama3.1-8B 1.42 100
GPT-4.1 1.17 100

the dump truck is required to perform an inspection task.

At the beginning of the experiment, the operator is-
sued the instruction “dump truck go inspect the puddle.”
The QA LLM module decomposed this instruction into
the atomic task T1 (navigate to the puddle) and generated
a corresponding DAG. As the dump truck approached the
puddle, the operator noticed that the current path would
cause the dump truck to drive directly through the pud-
dle. Therefore, approximately 60 seconds into the ex-
periment, the operator issued a new command—"avoid
the puddle before executing all tasks” to the QA LLM
module. Through the Task Interface module, the operator
confirmed the task modification: the system restructured
the task dependencies by introducing a new avoidance
task (T1) and making the original inspection task (T2)
dependent on the successful completion of the avoidance
task. The system then refined the task dependency graph
accordingly, updating the original navigation task to ex-
ecute only after the successful completion of the new
avoidance task.

3.2. Evaluation of DAG Validation and Error Correc-
tion Performance

Using the dataset provided by Wang et al. [10], 12 test
cases containing dependency logic errors were selected to
evaluate the performance of different LLMs in DAG gen-
eration and error correction. Two models, LLlama3.1-8B
and GPT-4.1, were evaluated. Through the visual valida-
tion interface of the Task Interface module, the operator
was required to interactively generate a valid DAG-based
task decomposition within a maximum of three rounds of
dialogue.

Table 1 presents a performance comparison between
the two models in the visual DAG validation and er-
ror correction tasks. Experimental results demonstrate
that the proposed human-in-the-loop DAG refinement
framework exhibits strong performance in error correc-
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Fig. 5 Real-time DAG refinement simulation experiment
of the proposed method. At Os, the dump truck be-
gins executing task T1 (inspect puddle) following a
direct path to the puddle. At 60s, as the dump truck
approaches the puddle, the operator recognizes that
the current execution path would cause the robot to
traverse through the puddle and issues a refinement
command. The system activates the DAG refinement
mechanism, restructuring the task dependencies: a
new avoidance task becomes T1, while the original
inspection task becomes T2 and now depends on suc-
cessful puddle avoidance.

tion tasks. Evaluated on 12 dependency logic error cases
from standard datasets, the Llama3.1-8B model required
an average of 1.42 dialogue rounds to complete the cor-
rections, while the GPT-4.1 model achieved the same
with an average of just 1.17 rounds. Both models at-
tained a 100% correction success rate, indicating that all
test cases could be successfully transformed into correct
DAG task decompositions within three dialogue rounds.
GPT-4.1 demonstrated higher efficiency in task compre-
hension and refinement, reducing the number of inter-
action rounds by 17% compared to Llama3.1-8B. These
findings confirm the effectiveness of the DAG-based ver-
ification method and highlight performance differences
among large language models in understanding complex
task dependencies and executing error correction.

4. CONCLUSION AND FUTURE WORK

This paper presented a human-in-the-loop DAG refine-
ment framework that tightly integrated task decomposi-
tion by LLM with refinement guided by detailed feedback
from the human operator. Using a visualization-based
verification interface and an interactive dialogue mecha-
nism, the framework demonstrated the ability to dynami-
cally adapt to unexpected environments in both simula-
tion experiments and evaluations on standard datasets,
while enabling effective error correction. On average,
the Llama3.1-8B model required 1.42 dialogue rounds
to successfully resolve task dependency errors, whereas
the GPT-4.1 model required only 1.17 rounds to achieve
successful refinement. Future work includes develop-

ing safety mechanisms to handle human judgment errors
and communication failures where human input cannot
be transmitted to the robot system.
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