Estimation of Lower Limb Joint Torque
Using Handrail Force and Floor Reaction Force
During Sit-to-Stand Motion in the Elderly
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Abstract— Many elderly individuals experience a
decline in motor function. To provide appropriate
rehabilitation programs, a sufficient and convenient
evaluation method is necessary. In this study, we
focused on the sit-to-stand (STS) motion, a crucial
activity in daily life, and used handrail to obtain force
data safely and easily. Previous studies have proposed
methods for estimating scores such as the Timed Up
and Go test from forces applied to the hand, hip,
and foot, classifying elderly individuals into several
motor function categories. However, these indicators
are insufficient for evaluating the function of specific
muscles or joints in the lower extremities individually.
The primary objective of this study was joint torque,
which more directly represents the function of specific
muscles and joints. We measured the time-series data
of forces acting on the body during STS motions and
developed a model using Long Short-Term Memory
to estimate lower limb joint torques. As a result, knee
and hip joint torques were accurately estimated from
force applied to hand, hip and foot. Furthermore,
this method demonstrated the potential for early
detection of joint disorders. This approach allows for
a detailed assessment of the state of the knee and hip
joints simply by standing up while holding a handrail.

I. INTRODUCTION

The decline in motor function occurs in many elderly
individuals [1], leading to a reduction in activities of daily
living and, consequently, a decrease in quality of life. To
prevent this problem, an increasing number of elderly
individuals undergo rehabilitation to maintain or restore
their motor function. To provide optimal rehabilitation,
it is essential to assess the motor function of each in-
dividual. To identify the target areas for rehabilitation
approaches, various measurements are conducted in re-
habilitation settings.

While the assessment tools used in clinical settings
are valuable, they present several limitations. In these
settings, two measurements are commonly used in vari-
ous conditions: the Timed Up and Go (TUG) test and
standing time on one leg with eyes open. The TUG test
measures the time required for an individual to stand
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up from a chair, walk three meters, turn around, and
return to the chair. It has been shown to correlate with
lower limb muscle strength and walking speed [2]. The
standing time of one leg with eyes open reflects the
balance function [3]. In hospitals, these measurement re-
sults are used to determine whether the subject requires
rehabilitation. However, a major issue with these widely
conducted tests, particularly the TUG test [2], [4], gait
tests [5], [6] and standing time on one leg with eyes
open, is the risk of falls during measurement. Addition-
ally, the currently performed STS tests [7], [8] assume
that individuals can complete the motion independently,
making it difficult to apply them to elderly individuals
who cannot perform the STS motion without upper limb
support. Furthermore, elderly individuals with reduced
balance ability are at risk of falling during the standing
motion. As a result, healthcare professionals must always
be present, making the process time-consuming and in-
creasing the workload of physicians, physical therapists,
and other rehabilitation specialists. Therefore, to reduce
the burden on healthcare professionals while providing
more effective rehabilitation, a system is needed that can
safely, easily, and instantly estimate the current motor
function of elderly individuals.

Several attempts have been made to develop remote
monitoring and evaluation systems to facilitate better
assessment and rehabilitation of motor function. For
example, accelerometers and inertial measurement unit
sensors are often used to monitor motor behavior con-
tinuously during rehabilitation [9], [10]. Previous studies
utilized accelerometers to estimate locomotion parame-
ters such as stride length and cadence. Recently, the Wii
Balance Board (Nintendo) was also used to evaluate the
balance function [11], [12]. The authors reported that the
Wii Balance Board could reliably monitor the center of
pressure length and velocity, and thereby evaluate weight
shift while sitting and standing. Regarding sensor tech-
nology, RGB-depth sensors and motion sensors, are also
often used for evaluation [13]. The development of sensors
to evaluate the motor ability on behalf of therapists
appears to be a promising direction for rehabilitation
assessment.

To further promote the direction of this research,
researchs have been conducted on systems focusing on
handrails used in rehabilitation settings to ensure safe



STS motions. It has been found that the weaker a
patient’s lower limb motor function, the greater the
force applied to the handrail [14]. Based on this, studies
have been conducted to evaluate whole-body motor func-
tion using force data obtained from handrails equipped
with force sensors. An et al. estimated the severity of
hemiplegic patients based on the force applied to the
handrail [14]. Additionally, Kihara et al. developed a
system that analyzes forces applied to the handrail,
buttocks, and foot using machine learning to estimate
TUG test performance and one-leg standing time with
eyes open, enabling classification of motor function in
elderly individuals [15]. However, relying solely on these
evaluation metrics makes it difficult to estimate the
deterioration of specific joints or muscles, making them
insufficient for assessing the detailed condition of elderly
individuals.

In this study, we focus on muscle strength and joint
torque as key indicators for evaluating motor function.
The TUG test assesses walking ability, balance, and
muscle strength comprehensively. However, TUG does
not evaluate these elements individually. Meanwhile,
muscle weakness is one of the primary causes of motor
function decline [16], and muscle strength is a key factor
in generating joint torque. Therefore, joint torque has
a strong correlation with motor function, and it can be
considered useful for accurately estimating a patient’s
current condition in detail. Elderly individuals, on av-
erage, utilize 97 % of their maximum voluntary torque
to perform a STS motion [17]. By estimating torque
during this motion, it is possible to infer an individ-
ual’s maximum voluntary torque. The minimum torque
required to perform a STS motion independently has
been investigated [17]. Assessing how close an individual
is to this threshold, as well as tracking changes during
rehabilitation and in daily life, would be highly valuable.
Although calculating joint torque typically requires body
trajectory data, obtaining such data during rehabilita-
tion or daily activities is challenging. Therefore, this
study aims to estimate lower limb joint torque without
using body trajectory data, relying solely on informa-
tion obtained from force sensors embedded in assistive
devices.

II. METHODS

The proposed method evaluated lower limb function
in elderly individuals based on the forces exerted on the
body during the STS motion. Specifically, forces acting
on the hand, hip, and foot are measured during the STS
motion, and the obtained force data were used as inputs
for the lower limb joint torque estimation model.

A. Calculating Joint Torque

Although body trajectory was not used as input for
the estimation model, joint torque must be calculated
as training data. The STS motion occurs in the sagit-
tal plane, a two-dimensional body model was used, as
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Fig. 1: Body Model and External Force Directions

defined in Figure la. In this model, red indicates joint
torques and their positive directions, blue represents key
point names, and black denotes segment names. We
define the joint angles and segments used in this study
based on key points.

As shown in Figure 1b, external forces acting on the
body were considered in both the horizontal (z direc-
tion) and vertical (z direction) axes, applied to the foot
(Fioot), hip (Fhip), and hand (Flhana). For joint torque
calculations, inverse dynamics using Newton’s method
was applied.

B. Estimation Model

A Long Short-Term Memory (LSTM) [18] model was
employed to estimate the maximum lower limb joint
torque of elderly individuals. When body trajectory data
was available, joint torque could be calculated using
inverse dynamics. However, in the absence of body trajec-
tory data, torque cannot be computed directly. As stated
above, this study aims to estimate the lower limb joint
torque without using body trajectory data. Therefore,
joint torques are computed for training data, and we
employ a LSTM network, using forces acting on the
body as input and joint torque as output. Instead of
selecting specific features from the time-series data, it
was considered that handling the data in its raw time-
series form preserves more information and improves
estimation accuracy. The model takes the forces exerted
on the body during STS motion as input and outputs
the estimated joint torques.

C. Ezperimental Setup

A validation experiment was conducted with elderly
individuals using the day-care rehabilitation service
at Asanohi Orthopedic Clinic. This experiment was
approved by the Ethics Committee of the Graduate
School of Information Science and Electrical Engineering,
Kyushu University (Approval Number: 2021-06-1). Writ-
ten informed consent was obtained from all participants.

Five males and ten females participated in the study.
Table I shows the information of the participants. All
participants had some form of orthopedic disorder.
Eleven participants (three men, eight women) required
assistance with tasks such as household chores but were
generally able to live independently, while four par-
ticipants (two men, two women) exhibited significant
functional decline, necessitating daily assistance.
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Fig. 2: A Series of motions Performed by the Experimental Participants

TABLE I: Information of Participants

Age  Weight [kg]
Mean 81.9 46.7
Standard Deviation  10.1 7.9
Maximum 97 59
Minimum 63 35

In this experiment, only the horizontal handrail among
the vertical and horizontal handrails implemented in the
measurement system was used. As shown in Figure 2, the
participants performed a series of STS and stand-to-sit
motions three times. In this experiment, we measured
the forces acting on the body during the STS motion
using the measurement system developed in a previous
study [15]. As shown in Figure 3, the system consists
of an aluminum frame base, equipped with force plates
(Tech Gihan Co., TF-4060) placed under the buttocks
and foot, and a load cell (Leptrino Co., FFS080YS102A6)
attached to the front handrail. From the force plates, we
measure anterior-posterior (x direction) and vertical (z
direction) force acting on the hip and foot (Fiip, Fioot)s
likewise from the load cell, we measure two-dimensional
force information in the x and z directions acting on the
hand (Fhanq)- This system utilizes a Raspberry Pi to si-
multaneously record data from all sensors, and individual
participants are managed using IC cards.

The coordinate system was defined with the forward
direction toward the seat as the z-axis and the vertical
direction as the z-axis. The seat height was set at 420 mm
from the foot, and the horizontal handrail height was
set at 700 mm from the foot. A webcam (Logicool Co.,
C920n) was used to record the STS motion utilizing the
handrail from the right side. The webcam’s frame rate
was set to 30 fps, while the sampling rate of the force
plates and load cell was 250 Hz. Therefore, the force
data were downsampled to 30 Hz to match the webcam’s
frame rate. Additionally, to calculate real-world distances
from the image data, two AR markers were placed to
the right of the seat with a center-to-center distance of
135 mm.

Since posture data is necessary to calculate joint
torques to train LSTM model, the posture estimation
of the participants was performed using YOLOv8x-
pose [20] from videos capturing the participants execut-
ing a STS motion using a handrail. In this experiment,
only the right side keypoints of the participant’s body
was used.

During the estimation, the detected keypoint positions
sometimes exhibited sudden changes due to misalign-
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Fig. 3: Overview of the System

ment between consecutive frames. To mitigate this issue,
a moving average over five frames was applied. Since
YOLO does not provide the coordinates of the toe key-
point, the toe position was estimated based on the ankle
keypoint. Specifically, the toe keypoint was determined
by shifting the ankle keypoint 251 mm in the positive
z-axis direction, which corresponds to the average foot
length [21], [22]. Based on statistical data from previous
research [23], the segment mass as a proportion of body
weight, the center of mass position from the proximal
end, and the rotational center position from the proximal
end for each segment were determined, as shown in
Table II. Since posture estimation was performed frame
by frame, joint velocity was calculated from the change
in joint angles per frame, and joint acceleration was
obtained from the change in joint velocity.

Similarly, the translational acceleration of each seg-
ment’s center of mass was calculated. The estimated
posture information derived from keypoint coordinates,
along with force data obtained from the handrail and
from the force plates installed under the buttocks and
foot, were used for joint torque calculation. Before cal-
culation, the measured force data were normalized by
dividing by each participant’s body weight, and the
segment masses were also normalized by body weight.
The segment lengths were obtained from the keypoint
distances in the images and converted into real-world
units (mm) by multiplying them with a scale factor
determined from the center-to-center distance of two AR
markers visible in the same video frame.

Regarding the calculation of joint torques, we did
not include the Center of Pressure (CoP) in this study.
This decision was made because the force plate data,
though recorded with devices from a previous study’s
methodology, lacked clearly identified column names for
the moment data necessary for accurate CoP calculation.
For the point of application of force, specifically for the
reaction force from the foot, the difference between the



TABLE II: Data of Segments

Segment  Center of  Radius of

Weight Mass Gyration

/Body /Segment  /Segment

Segment Weight Length Length

Foot 0.015 0.500 0.475
Leg 0.047 0.433 0.302
Thigh 0.100 0.433 0.323
HAT 0.678 1.142 0.903
Upper arm 0.028 0.436 0.322
Forearm 0.022 0.430 0.468

body center of mass’s z-coordinate and the foot segment
center of mass’s z-coordinate was used, while ensuring
that it remained within the foot segment range. For the
buttocks, the force application point was fixed at the
proximal end of the segment (waist). To remove noise and
smooth all calculated torques, a moving average with a
window size of 10 (0.33 seconds) was applied.

Following the previous study [15], the moment of seat-
off was defined as the time when the vertical force acting
on the hip (£y;,) became less than or equal to 25 N.
The following data was recorded for a duration of three
seconds, from one second before seat-off to two seconds
after seat-off:

o Ground reaction forces at the foot in the x, z direc-
tions: Ff  FF o

o Ground reaction forces at the hip in the z, z direc-
tions: Fii, Fii,

e Handrail reaction forces in the =z,z directions:
Flfand’ F}fand

« Joint torques calculated using the Newton’s method:
torque of ankle (74 ), knee (7x), and hip (7g)

These data were recorded for each STS motion to train
the estimation model.

The learning process was conducted independently for
each joint. The input force conditions were divided into
two cases:

o All forces acting on the body
(‘F}Zjip7 thip7 Ffatv)ot’ Fff)ot’ ‘Flfamd7 Fﬁand)
e Only forces acting on the hands
(Flfand7 F}fand)
For each case, we investigated whether it is possible to
estimate lower limb joint torque using all forces acting
on the body and whether it was feasible to estimate joint
torque using only hand forces, which is more convenient
than using all forces.

Validation and test data were randomly selected from
multiple experimental participants in equal proportions.
This ensured that the training, validation, and test sets
contain data from mutually exclusive participants.

Figure 4 shows the proposed torque estimation model.
For each training session, the data was split according
to predefined conditions, and learning was performed.
From the predicted torque data, the maximum estimated
torque (7;"**) was compared with the maximum torque
in the test data (7/"**). Using eq. (1), the Mean Absolute
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Error (MAE) was calculated for each joint.

m

1 max s~max
MAE = % Z Tlda - Tlda . (1)
d=1

Here, [ represents the joints: ankle (A), knee (K), and hip
(H). Additionally, m denotes the total number of STS
motions included in the dataset.

In this experiment, data were collected from 15 par-
ticipants, with a total of 45 STS motions recorded.
Therefore, data from three participants (nine instances
in total) were used as test data, and another three
participants were used as validation data. The process
of data splitting, learning, and MAE calculation was
repeated 100 times. Evaluation was performed using the
mean MAE (MAE;) over 100 iterations for each joint.

This study utilized the following hyperparameters for
the LSTM model: a window size of 30, in all force
condition, seven LSTM layers for ankle torque prediction,
and eight layers for knee and hip torque prediction. In
hand force condition, only one LSTM layer for each
torque. Training was conducted for 200 epochs, with
early stopping applied if the validation loss did not
improve for 10 consecutive epochs. The learning rate was
set to 0.0005, the batch size to 32, and the hidden size
to 256. The Adam optimizer was used for training.

The LSTM model was chosen as a standard uni-
directional baseline model to evaluate its fundamental
performance in time series prediction. Specifically, for the
hand force condition, a single LSTM layer was employed
to mitigate the risk of overfitting, given the specific
characteristics of the data, while still aiming to capture
essential time-dependent relationships.

III. RESULTS

Table III shows the mean MAE (MAE;) obtained as
a result of 100 training iterations for each joint torque
under different input conditions. Due to the experimen-
tal setup, all force condition and hand force condition
involved testing with data from participants not included



TABLE III: Results of Lower Limb Joint
Torque Estimation [Nm/kg]

Peak condition

torque all force hand force
MAE 5 1.08  0.08+0.00 0.13+0.01
MAEg 439  0.184£0.01 0.584+0.03
MAEg 7.05  0.38+0.02 1.0340.05

Values are presented as mean absolute error
+ 95% confidence interval.
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Fig. 5: Ilustration of Knee Joint Torque Estimation

in the training. For the ankle joint torque (74 ), percent-
age of MAE, relative to peak joint torque was 8 % in
all force condition, and 12 % in hand force condition.
Regarding the knee joint torque (7x), all force condition
showed 4 % error rate, and hand force condition showed
13 %. The hip joint torque (1) was 5 % error rate in all
force condition, and 15 % in hand force condition.

To verify the effectiveness of the proposed method
in inter-individual comparisons, the estimation was per-
formed under all force condition, which uses all forces
acting on the body as input. Both participants had
similar ages, weights, and levels of care required, but one
participant had a knee joint disorder, which is expected
to result in a lower knee joint torque. Figure 5 illustrates
the estimation results. The estimated torque of the par-
ticipant who had knee disorder (red dot line) was smaller
than that of the participant who did not have any knee
disorder (blue line).

IV. DISCUSSION

This study enabled the estimation of specific lower
limb joint torque values for each individual. Particularly
for knee and hip joint torque, the proposed method
demonstrated high accuracy in estimating maximum
torque value. Especially, the estimation of knee joint
torque has the potential to contribute to the detection
of knee joint disorder and the quantitative evaluation
of motor function. In previous studies by An [14] and
Kihara [15], participants’ motor functions were only clas-
sified into a few categories. Compared to classification,
estimating actual values is more useful for continuous
monitoring, as it allows us to determine whether the
torques tend to decrease over time.

Additionally, this method allows for easy and detailed
monitoring of rehabilitation progress and changes in
daily life. According to previous study [25], the preva-
lence of symptomatic knee osteoarthritis (OA) had been
increasing in the US, with approximately 5 million pa-
tients over 65 years old. Severe OA could impair standing
and walking due to joint deformities, pain during motion,
and restricted range of motion. By estimating knee joint
torque, early detection and intervention for these condi-
tions may become possible.

In all force condition, the estimate error of knee joint
torque was 4 % relative to the maximum torque. From
previous research [17], it was found that the maximum
knee joint torque (7x) in elderly individuals was ap-
proximately 100 Nm, and the minimum torque required
for them to stand up from the chair independently was
around 80.7 Nm. Furthermore, the knee joint torque
decreases by approximately 0.1 Nm/kg every 10 years
with aging, which was calculated from statistical data in
the previous study [19]. This represented about 10 % of
the maximum knee joint torque in elderly individuals.
Because the estimate error of knee joint torque resulted
in this study was lower than the change related to aging,
we were able to estimate maximum knee joint torque by
all force condition. Similarly, ankle joint torque and hip
joint torque were also lower than 10 % error rate. There-
fore, using the proposed method, it is able to estimate
the maximum lower limb joint torques, especially knee
and hip joint torque, of the participants by using the
forces applied to the hand, hip and foot as inputs.

In hand force condition, significant errors occurred in
the ankle torque estimation, which suggests that ankle
joint torque is difficult to estimate using only force
applied to handrail. In the same way, under the hand
force condition, both knee and hip joint torque estima-
tions failed to achieve high accuracy. Since the inverse
dynamics calculations for torque estimation started from
the foot segment, errors accumulated as the calculations
progress from the distal to the proximal segments, lead-
ing to larger errors in the proximal segments. In other
words, the errors increased on the order 74, 7Tk, and
. Due to the lower input dimensionality, the model
was unable to learn parameters sufficient to follow the
increased complexity and errors in 7 and 7y compared
to 7a.

In both conditions, ankle joint torque estimation ac-
curacy was not high. A previous study [24] investigated
that dorsiflexion of the ankle joint was necessary to
facilitate STS motion. Pulling the feet backward and
dorsiflexing the ankle joint shifts the center of gravity
forward. However, in this study, participants used a
handrail. By pulling the handrail toward themselves,
they inclined their upper body forward, which allowed
them to shift their center of gravity forward more easily.
Therefore, a possible reason for the decreased accuracy
in ankle joint torque estimation is that the maximum
ankle torque values did not vary significantly among



participants, resulting in no distinct relationship between
the forces acting on the body and the ankle joint torque.

V. CONCLUDION

In this study, the maximum torque of the knee and hip
joints during the STS motion of the elderly was accu-
rately estimated from the forces applied to the buttocks,
foot, and hands. This study enables a detailed assessment
of the current lower limb function of elderly individuals
simply by performing the STS motion.

As a future direction, we are considering the estimate
of joint torques based solely on the force applied to
the handrail. Measuring only the forces applied to the
handrail is much easier than measuring forces applied to
handrail, buttocks, and foot simultaneously. To facilitate
clinical implementation and daily life applications, our
goal is to estimate motor function by measuring only the
force applied to the handrail.
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