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Abstract— This paper proposes a method for generating
maps in indoor environments that include transparent objects
by using a stereo polarization camera and projector. Conven-
tional sensors like LiDAR and stereo cameras struggle with
glass, as they rely on diffuse reflection, while glass allows light
to pass through. In contrast, polarization cameras can measure
light polarization and estimate surface normals, enabling depth
estimation by combining polarization and RGB information.
However, when measuring transparent objects, reflected and
transmitted light cancel each other out, reducing polarization
contrast, and the RGB information causes the depth estimation
to output the depth of objects behind the glass. To address this
issue, this paper proposes a novel method that (1) improves
the S/N ration in polarization measument via diffuse reflection
on non-glass regions and (2) masks out the RGB color from
polarimetric depth estimation to not compute depth map of
objects behind the glass to obtain depth images that include
glass surfaces. Additionally, (3) in the mapping part, depth
estimation is repeated at multiple locations, and the results
are integrated using self-localization to generate a complete
environmental map. Experiments in an indoor environment
confirmed the effectiveness of the proposed method, enabling
glass-inclusive depth estimation and successful map generation
on a mobile robot.

[. INTRODUCTION

In recent years, the demand for robot operations in indoor
environments, such as office buildings, has increased, for
security and guidance applications. When these robots use
onboard sensors for self-localization and map generation,
obtaining depth images is crucial to represent the distances
between the camera and surrounding objects. However,
indoor environments often contain many glass structures,
such as fences, windows, and doors. Detecting and mapping
these glass surfaces is essential for the safe navigation of
robots [1].

Light Detection and Ranging (LiDAR) and stereo cameras
are commonly-used distance sensors for map generation.
LiDAR measures distances using the Time of Flight (ToF)
method, determining the time it takes for the laser pulse
to travel from the robot to surrounding objects and back.
Meanwhile, stereo cameras use multiple cameras with a
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Fig. 1: Optical path of a light ray upon entering a dielectric
material. When the incidence angle 6 is very small, the
specularly reflected light returns in nearly the same direction
as the incident light. Consequently, at such angles, LiDAR
can estimate the depth of the glass.

known baseline distance between cameras. By applying
the principles of triangulation, stereo cameras measure the
distance from the robot to surrounding objects.

As shown in Fig. 1, a light ray that incidents dielectric
objects can follow one of four paths: diffuse reflection,
absorption, transmission, or specular reflection. Generally,
when measuring the coordinates of opaque objects, LiDAR
detects diffusely reflected light, which is independent of the
incidence angle, allowing for robust distance measurement
from various positions. Meanwhile, when measuring the
corrdinates of glass, the transmitted and specularly reflected
light does not directly return to the LiDAR receiver except
when the angle of incidence is close to zero. As a result,
the depth output corresponds to the object out of or behind
the glass rather than the glass itself. When the angle of
incidence is small, specularly reflected light directly returns
to the receiver, allowing LiDAR to output the distance of
glass. However, because this occurs only within a narrow
angular range, only a few three-dimensional (3D) coordinates
are obtained, making them susceptible to removal as outliers
during map generation. Consequently, problems remain in
measuring the distance to glass using LiDAR.

Stereo cameras estimate depth through triangulation by
establishing correspondences between points captured by the
left and right cameras, using stereo matching or feature point
extraction and matching. Stereo cameras can be categorized
into passive stereo, which relies on textures in the environ-



ment, and active stereo, which projects light patterns using
a projector or laser. In passive stereo, glass is transparent,
meaning that the matching process associates points using
textures from objects behind the glass, leading to depth
outputs corresponding to the background objects rather than
the glass itself. In active stereo, the projected light follows a
path similar to LiIDAR. Therefore, except when the incidence
angle is close to zero, the projected light does not return to
the receiver, making depth measurement challenging. Thus,
regardless of whether passive or active stereo methods are
used, measuring the depth of glass remains highly challeng-
ing.

As discussed above, both LiDAR and stereo cameras,
which are widely used for robot map generation, face sig-
nificant difficulties in accurately measuring the coordinates
of glass surfaces.

Meanwhile, in the field of computer vision, methods using
a polarization camera have been proposed for measuring the
shape of transparent objects [2]. Non-polarized light that
enters a transparent object linearly polarizes when it reflects
and transmits. By measuring the polarization of transparent
objects under a non-polarized light source, it is possible to
estimate surface normals. Polarization cameras can acquire
both the angle of polarization corresponding to the phase
of polarized light and degree of polarization corresponding
to amplitude. Shao et al. proposed a method for estimating
the normals of transparent objects using a single polariza-
tion camera [3]. This method models the polarization of
light entering glass as a combination of transmission and
reflection to estimate surface normals. However, it requires
prior knowledge of the light source position and background
shape, making it challenging to apply in real-world robot
navigation.

A machine learning-based stereo depth estimation method,
DPSNet [4], incorporates polarization and RGB images to
output disparity maps. This approach enables depth estima-
tion in textureless regions by leveraging both RGB and polar-
ization information. However, because RGB information is
used for depth estimation across all regions, areas with tex-
tures beyond transparent objects can influence the estimated
depth. Also, when the specularly reflected light is weak and
the transmitted light from objects behind glass is strong,
polarization cannot be accurately measured, degrading the
depth estimation accuracy.

To address these limitations, this paper proposes a method
for generating environmental maps that include the 3D
coordinates of glass under indoor lighting conditions suitable
for robot navigation.

II. RELATED WORKS
A. Measurement of Transparent Object Using LiDAR

Jiang et al. developed a neural network that utilizes two
characteristics of glass: (1) it is only detectable within a
narrow range, and (2) the specular reflection from glass
surfaces exhibits high reflection intensity [5]. Yamaguchi et
al. combined the neural network-based classification method
with glass detection using a polarization camera [6]. While

their method detects glass using image-based techniques, it
must guess the glass’s location from LiDAR measurements
of the surrounding frame.

Some LiDAR devices feature a dual-return function, which
can capture two distance points along a single laser direction.
Some studies have utilized the dual-return function of LiDAR
for glass detection [7], [8]. Although these methods enable
the generation of maps that include glass coordinates, they
have a limitation in that they depends on the transparency
of the glass, making it difficult to detect highly transparent
glass.

Foster et al. [9] proposed a method for glass classification
by analyzing measurement angles for each voxel. While
opaque objects are measured from various directions, glass
and moving objects are detected from a narrow range of
angles. Their method identifies such points as potential glass
or moving objects and distinguishes glass using a unique H-
shaped structure in the 3D point cloud, formed when LiDAR
scans glass perpendicularly. However, this limits them to
upright glass that the robot has driven directly in front of.

As discussed above, methods using LiDAR face the lim-
itation that glass detection and range measurement are only
possible at the height of the LiDAR sensor.

B. Measurement of Transparent Object Shapes Using Polar-
ization Cameras

Polarization cameras, which can capture polarization in-
formation, are used for measuring the shape of transparent
objects. When unpolarized light enters a transparent object,
it undergoes linear polarization upon reflection and transmis-
sion at the object’s surface. By measuring the polarization
of transparent objects under an unpolarized light source, it
is possible to estimate the surface normals of the object. A
polarization camera can acquire both the polarization angle,
which corresponds to the phase of polarization, and degree
of polarization, which corresponds to the amplitude.

Miyazaki et al. developed a method to measure the 3D
shape of transparent objects using polarization cameras,
utilizing polarization angles [10]. However, this method as-
sumes that both the light source intensity and its polarization
state are known in advance.

Shao et al. proposed a method for estimating the surface
normals of transparent objects using a single polarization
camera [3]. Their approach formulates the polarization of
light upon entering glass as a combination of transmitted
and reflected components. Because the polarization angles
of reflected and transmitted light differ by 90 degrees, they
cancel each other out, reducing the degree of polarization.
This corresponds to a decrease in amplitude of the polariza-
tion signal, leading to a lower signal-to-noise ratio (S/N) for
the polarization data.

As a result, the polarization information of the light
reflected from the glass surface becomes difficult to obtain
due to the influence of transmitted light. To mitigate the
effects of transmission, this method imposes constraints on
the measurement environment, such as using a black, flat
background and uniform light source. However, in indoor
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Fig. 2: Optical path when measuring a transparent object.
The specularly reflected light is polarized perpendicular to
the plane of incidence, while the transmitted light is polarized
parallel to the plane of incidence, causing them to cancel
each other out.

environments, fluorescent lights and other light sources often
exist behind glass, making it challenging to control both the
background and lighting conditions.

All of these methods impose strong constraints on light
sources and backgrounds, making them unsuitable for en-
vironments where robots operate, where the positions of
light sources are unknown and the background conditions
are highly variable.

C. Application of Polarization Cameras to Mobile Robots

As an application of polarization cameras in mobile robots,
methods utilizing stereo polarization cameras for depth esti-
mation have been proposed.

Berger et al. developed a robust stereo matching method
for specular reflective objects using a polarization cam-
era [11]. This method employs polarization angles for match-
ing regions with high degrees of linear polarization. How-
ever, if the object behind a transparent object has a texture,
there is a risk that the distance to the background object will
be obtained instead of the transparent object.

A machine learning-based depth estimation method using
stereo polarization cameras, known as DPSNet [4], has
also been proposed. DPSNet is a neural network that takes
polarization and RGB images as input and outputs a disparity
map. By combining RGB and polarization information, it
enables depth estimation in textureless regions. The network
was trained using a synthetic indoor dataset as well as real
datasets collected in indoor environments, such as auditori-
ums and rooms, making it applicable to diverse environments
with varying lighting conditions and backgrounds where
robots operate.

However, in environments containing glass, these methods
are designed to output the depth of objects behind the glass
rather than estimating the depth of the glass itself.

III. PROPOSED METHOD
A. Overview of the Proposed Method

Challenges in measuring transparent objects with a po-
larization camera include the following: (1) Low S/N in
Polarization Images: As shown in Fig. 2, the polarizations
of transmitted and reflected light cancel each other out,
reducing the S/N. (2) Depth Estimation: In RGB images,

the textures of objects behind the transparent object are
captured, causing the estimated depth to correspond to the
background rather than the glass itself. To address these
challenges, the proposed method (1) imporoves S/N ration
in polarization measument via diffuse reflection on non-glass
regions and (2) masks out the RGB color from polarimetric
depth estimation to not compute the depth map of objects
behind the glass. Additionally, to improve interpretability
and usability for the downstream process, (3) in the mapping
part, depth estimation is repeated at multiple locations and
the generated environmental map includes glass.

Figure 3 depicts the flow of the proposed single-location
depth estimation system. In the proposed method, selective
projection of non-glass regions is performed to enhance
the S/N of polarization information. Because this projection
requires glass segmentation to obtain the non-glass regions,
the proposed method captures images twice. Unlike DPSNet,
which uses only images captured under ambient lighting
for depth estimation, the proposed method combines images
taken under ambient lighting with those captured under
selective projection for depth estimation. In the first capture,
images are taken without projection to segment glass regions.
Based on the segmentation results, selective projection is
performed onto non-glass areas during the second capture.
Because direct light does not reach objects behind the glass,
the amount of light transmitted through the glass and reach-
ing the camera is minimized. Additionally, light projected
onto the surrounding walls and window frames reflects
off the glass surface, enabling the capture of polarization
information from the reflected light. Therefore, the second
capture is performed with selective illumination, and the
obtained image is combined with the first capture’s image
to serve as input for the depth estimation algorithm. In
the mapping part of the proposed method, the depth maps
estimated at multiple locations are integrated to generate an
environmental map.

B. Selective Projection on the Opaque Regions

When measuring polarization in indoor environments, the
angles of polarization of transmitted and reflected light
differ, and in the case of transparent objects, transmitted and
reflected light cancel each other’s polarization and reduces
the degree of polarization, i.e., the S/N of the polarization
information. The proposed method reduces the contribution
of transmitted light by selectively projecting light onto non-
glass regions, allowing the acqisition of polarization infor-
mation from reflected light.

In the first capture, images are taken under ambient light-
ing without projection. A stereo polarization camera can cap-
ture both RGB and polarization images for the left and right
cameras. The RGB and polarization images obtained from
the left camera are denoted as ‘I, € R"*%*3 and LT, €
RMXwX2 " respectively. Similarly, the RGB and polarization
images obtained from the right camera are denoted as ZI, €
RAXwx3 and BT, € R"*%w*2 | respectively. The polarization
images consists of two chaccels, each representing the degree
of polarization and the angle of polarization. Here, h,w € N
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Fig. 3: Flow of the proposed depth estimation system.

represent the height and width of the acquired images in
pixels, respectively. The subscripts L and R indicate images
captured by the left and right cameras, respectively. However,
in the following, these subscripts are omitted when the same
processing is applied to both cameras.

Glass segmentation is required to selectively project light
onto non-glass regions. Here, I. and I, are the inputs, and
binary images M € R"*% that represents glass regions, as
shown in Fig. 4, are obtained from the segmentation results:

1 if glass is included in the pixel

1
0 ey

M(Z7] ) = {
else

To detect glass regions, we employ PGSNet [12], a glass
segmentation algorithm that performs segmentation using po-
larization and RGB information. Although PGSNet enables
glass segmentation, the unstable contour shapes and potential
false detections make it difficult to directly estimate depth
from the segmentation results.

Based on the segmentation results, images for selec-
tive projection onto non-glass regions are created. Because
the segmentation results M represent glass regions in the
image coordinate system, coordinate transformation to the
projector’s coordinate system is necessary for projection.
The following describes the process of transforming the
segmentation result from the left camera into the projector
coordinate system. The same procedure is applied to the right
camera segmentation result.

This transformation requires the intrinsic parameters of
the polarization cameras and projector K7, Kp € R3*3 and
the extrinsic parameters between the projector and camera,
including the rotation matrix R € R3*3 and translation
vector t € R3, as well as depth information D € R'*%,
Therefore, depth estimation is performed using the polariza-
tion and RGB images from the first capture. At this stage,
the estimated depth corresponds to objects behind the glass,
and the depth of the glass itself cannot be obtained. First, the

3D coordinates (z,y,2) € R? of pixels identified as glass
in the left camera coordinate system are determined. Given
a pixel (i,7) € R2, where M(i, j) = 1, its 3D coordinates
can be computed using the intrinsic matrix of the left camera
K L.

T 7
y| = 2z K;'|jl, )
z 1

where 2 represents the depth, obtained from the depth image
2 =D(i,j).

Next, these 3D points are projected onto the projector
image plane. The corresponding projector image coordinates
(up,vp) € R? for each (z,y,2) can be obtained using
the intrinsic matrix of the projector Kp and the extrinsic
parameters between the projector and the camera, R, t:

Kp [R]t]

N 8

where s € R is a scale parameter.

Through this transformation, the projector image coordi-
nates (up,vp) corresponding to pixels identified as glass
in the camera image are obtained. Because up and vp
are real-valued, they are rounded to the nearest integers:
ip = round (up) and jp = round (vp), where round (x)
represents rounding x to the nearest integer. (ip,jp) forms
glass segmentation result "M in the projector coordinate
system through make the projected glass pixels as 1 and the
other pixels as 0:

PM(k,1) = {

To illuminate non-glass regions, the projector input image
P is derived from M. The derivation involves a bit-

1 if (k1) = (ip, jp)
0 else

“4)
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Fig. 4: Blending images captured by the polarization camera.

inversion of ”M, followed by the application of morpho-
logical closing operations, which serve as a filtering step for
image refinement.

C. Masking RGB Information for Depth Estimation

In the second capture, the stereo polarization camera
captures images while the projector illuminates non-glass
regions: I/, € R"**>3 and I, € Rh*wx2,

As shown in Fig. 4, the images from the first and sec-
ond captures are integrated to create RGB and polarization
images for input into the depth estimation algorithm, I’ €
RM>wx3 and I € RM@ w2, respectively. The following
equations describe the integration process:

I/ =TI.0M, &)
I=I,0M+1I,0M, (6)

where o represents element-wise multiplication, and M is
the bit-inverted binary image of M.

The proposed method uses DPSNet [4] to do final depth
estimation by replacing the RGB and polarization input
images with the generated images I/ and I

D. Multi-Location Depth Integration for Map Generation

The robot moves slightly to ensure that the images taken at
the previous and current locations have overlapping regions,
and then it stops and captures two images, one with projector
illumination and one without. It then moves slightly again
and repeats this process.

At each imaging location, the aforementioned single-
location depth estimation is applied, allowing the generation
of a 3D point cloud from the depth images. Because these
point clouds are initially expressed in the coordinate system
of the left camera at each location, estimating the camera’s
position and orientation at each imaging location is necessary
to construct a unified environmental map. One approach
to estimating the camera’s position and orientation from
multiple images is Structure from Motion (SfM) [13]. As
this method performs map generation as an offline post-
processing step after the robot completes its movement, we
use COLMAP [14], an offline SfM method.

In the SfM part of the proposed method, the RGB images
captured without projector illumination are used. This is
because, for self-localization, not only the textures of opaque
objects surrounding the glass but also the textures of objects
visible through the glass can serve as useful feature points.

Although only the left camera’s position and orientation
are required for coordinate integration, the RGB images
captured by the right camera are also input into the SfM
process. This is because the point cloud obtained from SfM
is scale-ambiguous. By incorporating images from both the
left and right cameras into SfM, it is possible to restore the
correct scale. Because the baseline distance between the left
and right cameras can be obtained through stereo calibration,
comparing it with the distance obtained from SfM allows for
scale recovery.

IV. EXPERIMENTS
A. Experimental Settings

An experiment was conducted to demonstrate the feasibil-
ity of depth estimation for glass using the proposed method.
In this experiment, as shown in Fig. 5, the LUCID VP-
PHXO050S-Q was used as the polarization camera, and the
EPSON EB-X36 was used as the projector. Experiments
were conducted on glass placed on a table and glass facing a
hallway. The tabletop experiment aimed to demonstrate that
selective projection and RGB image masking of the proposed
method enhance the S/N of polarization images, enabling
depth estimation. The hallway-facing glass experiment evalu-
ated the feasibility of depth estimation and map generation in
a hallway environment, which closely resembles real-world
conditions where a robot would operate. Both experiments
were conducted indoors under fluorescent lighting condi-
tions.

1) Settings of the Tabletop Experiment: This experi-
ment evaluated the S/N improvement of polarization images
through selective illumination and the depth estimation of
glass. The measurement target was a flat glass panel with
dimensions of 295 mm in height, 300 mm in width, and
4.8 mm in tickness. The measurement target was fixed on
a table approximately 2 meters away from the measure-
ment device. To evaluate the proposed method for glass
depth estimation, we compared three scenarios: (1) without
masking or selective illumination, (2) masking only, and (3)
both selective illumination and masking (proposed method).
Depth estimation using DPSNet was performed for each
case, and the resulting depth estimations were compared.
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Fig. 5: The experiment was conducted using the measure-
ment device from the right image in the environment shown
in the left image. In the left image, the blue arrow represents
the distance from the glass, while the green arrow indicates
the angle.

2) Settings of the Hallway-Facing Glass Experiment:
This experiment evaluated depth estimation accuracy from
a single viewpoint and map generation results from multiple
viewpoints. In the evaluation of depth estimation accuracy
from a single viewpoint, the measurement target was a flat
glass panel with dimensions of 2.1 m in height and 0.9 m in
width.

Because the proposed method involves projection using
a projector during measurement, it is assumed that the
measurement accuracy depends on the distance from the
target due to light intensity attenuation over distance. Addi-
tionally, because the degree and angle of polarization of light
reflected and transmitted through glass depend on the angle
of incidence, the measurement angle is also considered to
influence accuracy. Therefore, measurements were conducted
from 12 different positions with distances of 2 m, 3 m,
and 4 m from the glass, and angles of 0°, 30°, 45°, and
60° between the glass normal and the polarization camera’s
optical axis.

AR markers were attached to the four corners of the glass
to obtain ground truth depth values for the glass plane, and
the accuracy of the depth estimation results was evaluated.
The ArUco library [15] was used for the generation and
detection of AR markers. For comparison, depth estimation
was also performed using DPSNet without applying the
proposed method, inputting RGB and polarization images
captured directly through the glass.

The accuracy of depth estimation using the proposed
method was evaluated. The mean absolute error (MAE) for
each distance at angles of 0°, 30°, 45°, and 60° is shown
in Table I. Depth maps for an incident angle of 0° are
shown in Fig. 8, using a turbo colormap to represent depth,
with cool colors indicating closer regions and warm colors
indicating farther regions. The color scale varies depending
on the measurement distance.

In evaluation of map generation from multi viewpoints, the
measurement device was fixed on a cart to perform measure-
ments from multiple viewpoints. The device was mounted
at a height of 0.75 m above the ground, facing diagonally
forward to capture the hallway walls and glass within the
field of view of both the polarization camera and projector.
Measurements were performed by manually moving the cart.
The measurement area included glass with dimensions of
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Fig. 6: Images captured using polarization camera. In DoP
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Fig. 7: Depth maps in the tabletop experiment. The depth is
colored with a turbo colormap and ranging from 0.58 m to
2.2 m.

2.1 m in height and 0.9 m in width. The measurements
were conducted in an indoor hallway at night. Data from
six positions along a 2.0 m section were integrated.

B. Results

1) Tabletop Experiment: The RGB image obtained from
the polarization camera in the tabletop experiment is shown
in Fig. 6(a). Figures 6(b) and (c) shows the degree of polar-
ization (DoP) image captured without and with projection,
recpectively. The degree of polarization in the glass region is
higher with projection than without. This result indicates that
the proposed projection algorithm improves the S/N ratio of
polarization images in the glass region. Figure. 7(a) shows
the depth map without masking or selective illumination,
where the depth inside the glass region corresponds to the
distant wall behind it. Figure. 7(b) shows the depth map
estimated with only masking in the RGB image, where the
edges of the glass are correctly estimated, but unintended
edges appear within the glass, despite it being a planar
surface. Figure. 7(c) shows the depth estimation result of
the proposed method (masking + selective illumination),
the depth inside the glass region shows a gradual gradient,
indicating that the actual depth of the glass is successfully
estimated.

2) Experiment in Hallway: For an incident angle of 0°,
the experimental results are presented in Table I and Fig. 8.
At all distances, the MAE of the proposed method was
smaller than that of the comparison method. Notably, at
distances of 2 m and 3 m, the comparison method exhibited
an MAEs close to 2 m, indicating that the depth of objects
behind the glass was measured. This is evident in Fig. 8§,
where objects beyond the glass are visible. In contrast, the
proposed method successfully estimated the depth of the
glass itself without outputting the depth of objects behind
1t.
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For an incident angle of 30°, the results are shown in
Table 1. At all distances, the MAE of the proposed method
was smaller than that of the comparison method. Although
the comparison method also output the depth of the glass
rather than the background at this angle, the proposed
method provided depth estimates closer to the ground truth.
Under the 3 m condition of the comparison method, the
depths smaller than the glass depth were output within the
glass region, likely due to reflections from fluorescent lights
causing erroneous depth estimates, which were successfully
corrected by the proposed method.

For an incident angle of 45°, the results are shown in
Table 1. At this angle, the MAE at 3 m was larger for
the proposed method than for the comparison method. The
degradation in estimation accuracy is attributed to overesti-
mated depths near the glass edges in the center of the image.

For an incident angle of 60°, the results are shown in
Table 1. At all distances, the MAE of the proposed method
was smaller than that of the comparison method. Under this
condition, the texture behind the glass was barely captured
in the RGB images, allowing the comparison method to
output glass depths as well. However, the proposed method
achieved higher accuracy in glass depth estimation through
the combination of segmentation and selective projection.

Figure 9(a) shows the experimental environment. Fig-
ure 9(b) shows the environmental map generated using the
proposed method. Figure 9(c) shows the map generation
results using the comparison method, where depth estimation
was performed solely with DPSNet from a single viewpoint.
The planar shapes of the walls on either side of the glass
were preserved, and point clouds existed in the regions
where glass was present. This result indicates successful
measurement of the hallway structure, including the glass.
However, due to errors in self-position estimation and depth
estimation, some opaque objects appeared as layered point
clouds. Additionally, compared to opaque regions, the glass

TABLE I: Mean absolute error of depth estimation [m]

Incident angle | Distance DPSNet  Proposed method
2m 1.37 0.09
0° 3m 1.41 0.39
4m 0.60 0.37
2m 0.40 0.23
30° 3m 0.47 0.27
4 m 0.76 0.39
2m 0.57 0.26
45° 3m 0.54 0.57
4 m 0.93 0.24
2m 0.24 0.17
60° 3m 0.30 0.28
4 m 0.35 0.31

regions exhibited greater variability, with some significantly
erroneous estimates.

C. Discussions

The tabletop experiment indicated that the DoP of the glass
region is improved using the proposed projection algorithm
and both proposed projection algorithm and RGB image
masking contribute to the accurate depth estimation of glass.
In addition to enhancing the accuracy of masking by applying
morphological closing to the segmentation result obtained by
PGSNet, it was found that the presence of projection light
resulted in higher accuracy compared to masking alone. The
improvement in the S/N due to the projection was beneficial.

In the hallway experiment, the proposed method estimated
accurate depth of glass from a single viewpoint. In the
proposed method, images obtained from two captures are
combined separately for RGB and polarization to generate
the input for the depth estimation algorithm. In glass region,
RGB information leads to estimate the depth of objects
behind the glass. Therefore, by masking RGB information,
the precision of glass depth estimation was improved.

In the environmental map, we confirmed that the self-
localization results from SfM, using RGB images from the
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polarization camera, could be effectively utilized to integrate
depth estimation results from each capture point. While we
successfully measured the planar shape of hallway walls, in-
cluding glass, we observed that the accuracy of the estimated
glass point cloud was lower than that of the opaque object
regions. This discrepancy is likely because opaque objects
are measured with absolute depth using RGB information,
whereas for glass regions, depth is estimated relatively based
on surface normals from surrounding objects.

V. LIMITATIONS AND FUTURE WORKS

In proposed method, segmentation and coordinate con-
version need to be calculated between Ist capture and 2nd
capture. Mapping experiment is conducted by repeatedly
stopping at viewpoint and move. Future work should develop
a continuous measurement system that allows robots to
perform depth estimation without stopping at each viewpoint.

VI. CONCLUSIONS

This paper proposed a novel 3D map generation method
that accounts for transparent objects in indoor environments.
By utilizing a stereo polarization camera and a projector, the
system selectively illuminated non-glass regions to enhance
polarization-based depth estimation. Experimental results
demonstrated the effectiveness of the proposed method in
generating accurate depth and environmental maps, including
glass structures. In a tabletop experiment, the proposed algo-
rithm increased the DoP in the glass region. Also, masking of
the glass region in RGB images removed the influence of the
objects behind the glass in depth estimation. The accuracy of
the depth estimation was improved using the two methods.
The hallway expriment ensured that the proposed single-
viewpoint depth estimation algorithm worked for actual glass
windows. Also, in the map generation, the proposed method
generated an accurate point cloud of glass.
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