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Figure 1: From a beta-noised graph to a structured floorplan, then rendered as layouts.

Abstract

We present a single-stage graph beta diffusion model for residential
floorplan generation. In contrast to multi-stage pipelines, our formu-
lation is end-to-end, avoiding error accumulation across modules
and reducing the number of model parameters and hyperparame-
ters. We further introduce an unsupervised Manhattan alignment
loss that encourages axis-aligned walls. Our method substantially
improves Fréchet Inception Distance over a parameter-efficient
GAN baseline.
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1 INTRODUCTION

Architectural floorplan design is labor-intensive, especially in the
early stages that require exploring many layout alternatives. Gen-
erative models can automate this process, improving efficiency and
providing diverse, well-structured options that enhance communi-
cation and client satisfaction.

Since the RPLAN dataset [Wu et al. 2019], deep learning has
become central to data-driven floorplan generation. GSDiff [Hu
etal. 2025] models layouts as graphs but uses a two-stage node—edge
pipeline, where upstream errors propagate and multiple models
enlarge both parameter count and hyperparameter space.

We propose a single-stage beta diffusion framework for struc-
tural graphs, jointly generating room types, connectivity, and ge-
ometry. Building on Graph Beta Diffusion (GBD) [Liu et al. 2024],
our method simplifies the pipeline and introduces an unsupervised
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Manhattan alignment loss encouraging axis-aligned layouts. Our
contributions are: (i) a single-model end-to-end framework, (ii) the
first application of GBD to real-world structural data, and (iii) a
reconstruction-free unsupervised Manhattan alignment loss that
promotes axis-aligned geometry.

2 METHOD

2.1 Floorplan Representation

A floorplan is modeled as an undirected graph G = (V, A) with N
junction nodes following [Hu et al. 2025]. Each node v; = (x;, y;, ;)
encodes normalized coordinates (x;, y;) € [0,1]? and a multi-hot
room-type vector r; € {0,1}€ over C room categories. Wall seg-
ments are represented by a binary adjacency matrix A € {0, 1}V
with A;; = 1if nodes i and j are connected by a wall.

2.2 Beta Diffusion

Let Gy = (Vp,Ap) denote the clean graph. The forward process
applies element-wise Beta noise parameterized by Gy; its closed-
form marginal is

q(Gt | Go) = Beta(n a:Go, n(1 - a:Gy)), (1)

where a; € (0,1] decreases as t increases and 5 > 0 controls
concentration (large n lowers variance).

The reverse process time-reverses (1) and learns per-step denois-
ing transitions. The one-step reverse posterior is

q(Gi—11Gt, Go) = (1 — Gt)’1 Beta(uy; ay, by), (2)
where
o ©
a; =n(ar-1 = a;)Go, br = n(1 = a;-1Go). (4)
At inference we predict Gy= -fo(Gy, t) and define
p0(Ge-11Gr) = dGi-1 | Gr, Go). )
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2.3 Training Loss
We minimize the sum of a diffusion surrogate loss and the proposed
Manhattan alignment loss:

L = LGBD + Aman ‘Lrs];}::duled. (6)

Manhattan alignment loss. To promote orthogonal geometry,
we impose an unsupervised alignment loss that penalizes off-axis
edges:

1 A in{ |x;—xi 12, |yi—y; |2
Lman — _ ZEij lOg(l + min{ |x; xjo|—2’|yz yjl })’ (7)
Zi, J Eij ij

where E; ; = sigmoid(x (E;;— 7)) is a differentiable edge derived from
the soft adjacency E. Here, 7 is a confidence threshold, k controls
the steepness, and o sets the tolerance for near-horizontal/vertical

alignment. We apply noise-aware scheduling,

T
heduled t
Lihedled = 3 ol L0, ®)

t=2

where Lr(lfa)n is computed on the step-t predictions, T is the total
number of diffusion steps, and y > 0 controls the schedule strength.
This keeps the penalty small under high noise and larger at lower
noise, encouraging axis-aligned walls when edges are reliable.
GBD surrogate loss. Following GBD [Liu et al. 2024], we use a two-
term KL surrogate that upper-bounds the divergence between the
learned reverse chain and the forward-defined target with trade-off
weight .

T

Lepp = Z ((1 - w) Lsampling(t) tw Lcorrection(t))> 9

t=2

Lampling(t) = Eq(6,.60) |[KUpo(Gi-11 G) | g(Gi-1] G, Go)) ]| ,
(10)

Lcorrection(t) = Eq(G,,Go) [KI(Qt( | GO(Gts t)) ” qt(' | GO))] . (11)

3 EXPERIMENTS

3.1 Implementation and Data

We implement the model in PyTorch with a 6-layer Graph Trans-
former and a Beta-diffusion schedule of T=1000 steps. The forward
Beta uses concentration 7=10,000 for active nodes/edges and 10 for
background. Training runs for 1M steps on a single RTX 3090 using
AdamW with Ir = 1073 and batch size is 128. Loss hyperparameters
are Aman=20, 0=0.01, k=30, 7=0.9, y=3, and ©=0.01. We evaluate
on RPLAN [Wu et al. 2019] (~80k floorplans), following GSDiff for
preprocessing to structural graphs and for the train/validation/test
split.

3.2 Evaluation Metrics

We evaluate generation quality using the Fréchet Inception Dis-
tance (FID), which measures distributional similarity between the
test set and generated floorplans. As baselines we include House-
GAN++ [Nauata et al. 2021], a parameter efficient GAN whose
inference uses a single generator and thus matches our small model
setting, and GSDiff [Hu et al. 2025]. We also report an ablation that
removes the proposed unsupervised Manhattan alignment loss.
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Table 1: Quantitative comparison on RPLAN.

Method FID| #Param (M)
HouseGAN++ [Nauata et al. 2021]  48.40 2
GSDiff [Hu et al. 2025] 4.83 125
Ours (with Manhattan Loss) 19.49 5
Ours (without Manhattan Loss) 149.86 5
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Figure 2: Qualitative comparison on RPLAN.

4 RESULTS

Table 1 summarizes FID and model size: our single-stage model
improves FID over HouseGAN++ but does not yet match two-stage
GSDiff; removing the Manhattan alignment term severely degrades
FID, confirming its utility. Numbers for HouseGAN++ and GSDiff
are taken from [Hu et al. 2025]; unlike HouseGAN++, our method
does not require bubble-diagram conditioning.

In Fig. 2, HouseGAN++ examples are reproduced from [Hu et al.
2025], and GSDiff outputs are generated in our environment using
the authors’ released model; HouseGAN++ often yields non-straight
walls, GSDiff is more orthogonal yet shows occasional failures, and
ours is typically clean and close to ground truth with rare failures
(e.g., the rightmost Ours).

5 CONCLUSION

We introduced a single-stage graph beta diffusion framework with
an unsupervised Manhattan alignment loss, achieving clear FID
gains over HouseGAN++ while retaining a simpler pipeline. We will
scale model capacity and conditioning to probe the FID-capacity
trade-off against two-stage pipelines such as GSDiff.

References

Sizhe Hu, Wenming Wu, Yuntao Wang, Benzhu Xu, and Liping Zheng. 2025. GSDiff:
Synthesizing Vector Floorplans via Geometry-enhanced Structural Graph Genera-
tion. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), Vol. 39.
AAAI Press, 17323-17332.

Xinyang Liu, Yilin He, Bo Chen, and Mingyuan Zhou. 2024. Advancing Graph Genera-
tion through Beta Diffusion. (2024). arXiv:2406.09357 [cs.LG]

Nelson Nauata, Sepidehsadat Hosseini, Kai-Hung Chang, Hang Chu, Chin-Yi Cheng,
and Yasutaka Furukawa. 2021. HouseGAN++: Generative Adversarial Layout
Refinement Network towards Intelligent Computational Agent for Professional
Architects. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 13632-13641.

Wenming Wu, Xiao Ming Fu, Rui Tang, Yuhan Wang, Yu Hao Qi, and Ligang Liu. 2019.
Data-driven interior plan generation for residential buildings. ACM Transactions
on Graphics (TOG) 38, 6 (2019), 1-13. https://doi.org/10.1145/3355089.3356556


https://arxiv.org/abs/2406.09357
https://doi.org/10.1145/3355089.3356556

	Abstract
	1 INTRODUCTION
	2 METHOD
	2.1 Floorplan Representation
	2.2 Beta Diffusion
	2.3 Training Loss

	3 EXPERIMENTS
	3.1 Implementation and Data
	3.2 Evaluation Metrics

	4 RESULTS
	5 CONCLUSION
	References

