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Abstract— We present a fiducial marker system tailored for
underwater acoustic imaging, enabling accurate detection and
recognition of multiple marker IDs in real-world Forward-
Looking Sonar (FLS) images. The marker is physically de-
signed with layered concrete–metal structure to generate strong
and distinctive sonar reflections. Our marker detection and
recognition pipeline is trained entirely on simulation data, yet
it achieves accurate performance on real-world sonar images.
By leveraging a custom FLS simulator we generate annotated
training samples that closely mimic real sonar characteristics.
A YOLO-based detector, trained with these simulated images,
localizes markers and regresses corner keypoints. For marker
identity recognition, detected regions are rectified and decoded
using a grid-based binary recognition scheme. Experiments
show that the model achieves a 86.6% true positive detection
rate and 100% ID recognition accuracy in the fully visible
patch subset of real sonar images, despite being trained
solely on synthetic data. This sim-to-real framework offers a
scalable solution for underwater localization and inspection in
autonomous robotic systems.

I. INTRODUCTION

Underwater sensing presents unique challenges due to
strong light attenuation and scattering in turbid and low-light
environments. While optical cameras are effective in terres-
trial and shallow-water settings, their usability significantly
diminishes in deep-sea or murky conditions due to limited
resolution and visibility range. In contrast, acoustic sen-
sors—particularly Forward-Looking Sonar (FLS)—enable
robust image acquisition based on sound wave reflections,
operating reliably even in complete darkness or sediment-rich
waters. These sensors have been widely applied in under-
water exploration, infrastructure inspection, and autonomous
navigation [1]–[4].

In environments where GPS is unavailable and natural
features are unreliable, fiducial markers serve as vital anchors
for underwater robots by providing discrete, recognizable vi-
sual patterns. Marker systems like AprilTag [5] and DeepTag
[6] have enabled reliable ID recognition and robot localiza-
tion in optical domains. Inspired by this success, researchers
have explored fiducial marker systems for sonar images.
However, marker recognition in sonar remains a challenging
problem due to low spatial resolution and speckle noise [7],
[8]. To facilitate controlled evaluation, sonar simulators such
as ACSim [9] can generate realistic synthetic sonar images.
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Fig. 1. Overview of the acoustic camera water tank environment setup. An
acoustic camera is suspended in water and looks toward the target. Concrete
blocks provide a stable base, and metal fiducial markers are mounted on
top of concrete blocks.

While some prior systems, such as ACMarker [10] and
AcTag [11], have introduced sonar-compatible marker de-
signs, their recognition performance in real-world scenarios
often suffers from environmental noise and reflection in-
consistencies, frequently yielding true positive rates below
50%. Moreover, existing efforts largely emphasize detec-
tion or coarse localization, leaving the ID recognition task
underexplored. Yet in many practical applications—such as
region tagging, structural inspection, and waypoint veri-
fication—reliable marker ID recognition itself is the key
to system function, especially when markers are deployed
with known spatial semantics (e.g., “ID1 is placed at the
entrance”).

To address this gap, we propose a FLS-specific fiducial
marker system designed for ID recognition in underwater
conditions. Figure 1 illustrates the experimental underwater
environment used in this study. An acoustic camera is
suspended in water, observing a set of concrete blocks on
which our metal fiducial markers are mounted. Instead of
focusing solely on marker detection, our system emphasizes
accurate classification of marker identities (IDs) especially
in the case of fully visible markers, enabling downstream
applications such as semantic region identification and task
triggering.

Specifically, this work contributes:
• A multi-ID fiducial marker design, using layered metal-

concrete structures optimized for sonar reflectivity and
distinctiveness.



Fig. 2. Principle of Forward-Looking Sonar (FLS) imaging. The transducer
array emits acoustic pulses over azimuth θ and elevation φ , and the returned
backscatter strength is measured at slant range r along each beam. Colored
rays illustrate beams at different angles, while the black shape is a reflecting
underwater object. The measured ranges form an r–θ 2D sonar image, which
can then be transformed into Cartesian coordinates for further analysis.

• A marker recognition pipeline trained entirely on sim-
ulated sonar data, capable of detecting markers, pre-
dicting corner keypoints, extracting affine-normalized
patches, and recognizing IDs on real FLS images.

Our system achieves high marker ID recognition accuracy
in real-world water tank experiments for the case of fully
visible markers, laying a foundation for deployable marker-
based underwater recognition systems in sonar imaging en-
vironments.

II. METHODOLOGY

A. Marker Design

As shown in Fig. 2, the FLS forms a 2D polar-coordinate
image I(r,θ) by emitting acoustic pulses over a range of
azimuth angles θ and elevation angles φ , and then inte-
grating the received backscatter strength BS(r,θ ,φ) over the
elevation direction. Here, r denotes the slant range from the
transducer to the target, θ specifies the azimuthal bearing,
and φ represents the vertical elevation angle. This integration
collapses the 3D backscatter field into a 2D slice, producing
the polar-form sonar image information that serves as the
input for subsequent detection and recognition stages.

As illustrated in Fig. 3, the proposed fiducial marker
is designed specifically for underwater sonar imaging. It
employs a layered structure composed of a concrete base and
a stainless steel top plate perforated with circular holes. The
concrete provides a diffuse acoustic scattering background,
while the metal layer ensures strong and consistent echo
returns from the hole patterns.

The entire marker measures 0.35m × 0.35m × 0.2mm.
Each marker encodes a unique 4×4 binary ID through the
arrangement of 16 holes, where the presence or absence of
a hole corresponds to binary values. The diameter of each
hole is 0.06m, with a center-to-center spacing of 0.022m.

As shown in the middle panels of Fig. 3, these markers
are clearly visible in sonar views. In the middle row of
sonar images, it can be observed that the regions immediately

Fig. 3. Visual and acoustic appearances of three kinds of fiducial markers.
From top to bottom: Optical camera images, acoustic camera images, and
their binary ID code.

below the circular holes of the markers appear brighter com-
pared to the areas above. This phenomenon arises because
the FLS transmits acoustic waves toward the marker at an
oblique angle, and the finite thickness of the marker plate
causes secondary or more reflections from the lower edges
of the holes. Such effects can be reproduced in simulation,
enabling the generation of synthetic sonar images that exhibit
similar bright regions around the circular holes. The bottom
panel of Fig. 3 presents the corresponding ID layout of
each marker, highlighting the structured nature of the binary
code embedded in each marker. These layouts will serve
as reference templates for marker recognition in subsequent
stages of the processing pipeline.

B. Detection Framework with Corner Points Prediction

We propose a simulation-trained detection framework that
simultaneously performs bounding box localization and cor-
ner keypoint regression.

As illustrated in Fig. 4, although the FLS software directly
outputs a blue-colored sonar image, we instead make use
of the raw information from the FLS, which contains (r,θ)
coordinates. These values are obtained from the emission
of acoustic beams and represent the measured range r and
azimuth angle θ . The raw image is inherently in grayscale, as
pixel values encode acoustic reflection intensity rather than
RGB color as in optical cameras.

To correct the curvature distortion introduced by the (r,θ)
sampling geometry, the raw polar image is converted into a
Cartesian (x,y) representation. This transformation rectifies
the geometric deformation caused by polar sampling in the
acoustic camera.

The detection network operates on this corrected (x,y)
domain, identifying bounding boxes for each marker and
regressing their four corner keypoints. The model is trained
using simulated sonar images and evaluated on real-world
water tank sonar images.

Training images are generated using a FLS simulator
[9], which we further customized to automatically generate
four-corner keypoint annotations for each marker based on
the FLS projection geometry. The simulation pipeline also



incorporates sonar-specific phenomena such as secondary
reflections caused by internal bouncing within the marker
structure, as well as Poisson and Rayleigh noise to emulate
underwater acoustic interference. Each synthetic image con-
tains multiple markers with varying poses, backgrounds, and
degrees of occlusion. These customizations help to bridge the
sim-to-real domain gap by encouraging the model to learn
robust features and avoid overfitting to clean, idealized data.

The detector is based on a You Only Look Once (YOLO)
style backbone [12] and jointly predicts a bounding box
and four corner keypoints for each detected marker. Ground
truth keypoints are computed from simulator-exported world
coordinates. For a 3D marker corner point p⃗0 in the global
coordinate system, its coordinate in the acoustic camera
coordinate system p⃗ is given by:

p⃗ = R⊤(p⃗0 −T), (1)

where R and T denote the acoustic camera’s extrinsic pa-
rameters. Figure 5 illustrates this coordinate transformation
from the global frame (orange) to the acoustic camera frame
(purple), where p⃗0 is first translated by T and then rotated
by R⊤ to obtain p⃗ in the acoustic camera frame. Through
the above computation, the ground-truth (r,θ) coordinates
of the four marker corners in the simulated images are ob-
tained. These polar coordinates are subsequently transformed
into Cartesian (x,y) coordinates, enabling direct integration
with the YOLO-style object detection label format. In this
representation, each training instance is specified by a class
label cls, a bounding box bbox = (xcenter,ycenter,w,h), and an
associated set of keypoints pts = {(xi,yi,vi)}4

i=1 describing
the four marker corners, where vi is a binary visibility flag.
The coordinates of both bbox and pts are normalized with
respect to the full image dimensions, such that all values lie
in the interval [0,1].

In the detection stage, we treat all markers as belonging
to a single object category labeled as marker, regardless of
their individual IDs. This enables us to formulate the task as
a single-class object detection problem, where the objective
is to localize the presence of any valid fiducial marker and
regress its associated four corner keypoints.

C. Marker ID Recognition via Patch Rectification

As illustrated in Fig. 4, after detecting the four corner
points of multiple markers in the sonar image, each marker
is individually rectified using its detected corner coordinates.
The objective of this rectification is to transform the marker
region, which is generally non-square in the original image,
into a square patch, as the markers are originally designed
to be square plate. This square normalization facilitates the
subsequent ID recognition process.

For the marker patch example shown in Fig. 4, we take
the top-right detected marker as a representative case to
illustrate the recognition flow. The resulting rectified marker
patch is approximately square. The slight residual distor-
tion—appearing, for example, as a mild parallelogram shape
with the lower-left circular feature not fully included—is
primarily due to small localization errors in the detected

corner points in prior detection step. Nevertheless, such
rectified patches are sufficiently accurate for reliable ID
recognition. The following content details the homography
matrix computation used for rectification and the methodol-
ogy for marker ID recognition.

Once bounding boxes and corner keypoints are predicted,
we extract rectified patches using affine homography. These
corner points serve as geometric anchors for a subsequent
affine homography transformation, which maps the distorted
sonar view of the marker into a normalized, front-facing
rectangular patch.

Negahdaripour [13] proposed a generalized sonar homog-
raphy formulation that enables point-wise mapping between
acoustic views without restrictive pose assumptions. The
homography matrix H is derived from the sonar projec-
tion geometry and rigid body transformation. Unlike optical
homographies, this matrix incorporates angular scaling and
non-linear projection terms specific to acoustic imaging.
Notably, H is not constant across the image plane—it varies
from point to point depending on the incidence angle and
local surface normal, reflecting the geometry of slanted sonar
beams interacting with 3D underwater structures.

In our application, we focus on fiducial marker ID recogni-
tion rather than dense mosaicking or exact 3D reconstruction.
As such, we make the following practical approximations:

• The elevation angle φ of the acoustic beams is relatively
small, and for the ARIS 3000 FLS used in this study
it ranges from −7◦ to +7◦. Over the limited spatial
extent of a single marker, φ can be regarded as locally
constant.

• The acoustic projection parameters can be regarded as
constants across a single marker instance.

Under these assumptions, the full projective homography
H becomes spatially invariant over the marker region and can
be well-approximated by a standard 2D affine transformation.
Let pi = (xi,yi)

⊤ and p′
i = (x′i,y

′
i)
⊤ denote the coordinates of

the i-th corner point of the marker in the source and target
images, respectively. The affine mapping is expressed as:

p′
i =

[
a11 a12
a21 a22

]
︸ ︷︷ ︸
A (linear part)

pi +

[
tx
ty

]
︸︷︷︸

t (translation)

, (2)

where A encodes rotation, uniform or non-uniform scaling,
and shear, while t = (tx, ty)⊤ represents translation. The
parameters A and t are estimated from four matched marker
corner keypoints between the source and target patches. This
affine approximation is sufficient to geometrically normalize
the marker patch prior to ID decoding, and is computation-
ally efficient under moderate viewpoint variation.

The resulting rectified patch isolates a single marker
instance from the sonar image via affine transformation.
To ensure reliable recognition, we first discard any patches
containing large pure-black regions, which typically result
from partial visibility where parts of the marker fall outside
the sonar field of view. This filtering step ensures that only
complete and interpretable marker regions proceed to the ID
recognition phase.



Fig. 4. Overview of the marker detection and ID recognition pipeline for forward-looking sonar images. From left to right: (1) FLS image taken in
Cartesian (x,y) coordinates, (2) Raw image in polar (r,θ) coordinates obtained from FLS raw information, (3) Fan image after geometric transformation
from raw image back to (x,y), (4) Detection results of four marker corner points with confidence scores, (5) Extraction of the rectified marker patch, and
(6) Binary ID recognition by decoding the grid pattern.

Fig. 5. Coordinate transform from the global frame to the acoustic camera
frame. The acoustic camera origin is shown in black; the global frame axes
are drawn as Xg, Yg, Zg, and the camera frame axes are drawn as Xc, Yc,
Zc). A marker corner point p⃗0 (orange) in the global frame is translated by
T and then rotated by R⊤ to obtain its coordinates p⃗ (purple) in the acoustic
camera frame.

The valid patch is then partitioned into a uniform grid
that matches the binary structure physically embedded in the
marker’s hole pattern. Each grid cell is analyzed by applying
a fixed intensity threshold to its sonar echo response. Cells
with intensities above the threshold are interpreted as binary
1, representing strongly reflective perforated (hole) regions.
Conversely, cells with lower intensities are classified as
binary 0, corresponding to flat stainless steel regions that
reflect less predictably. The resulting binary matrix is then
decoded into a digital ID.

To recognize the final marker ID, each valid patch is
first decoded into a binary matrix, following the procedure
described above. The predicted binary code is then compared
against all predefined ID templates illustrated in Figure 3
using the Hamming distance. The ID with the smallest
Hamming distance is assigned to the patch. This approach
enables reliable recognition by selecting the most plausible
match from a fixed ID dictionary. This strategy allows the

system to recognize multiple unique marker IDs within a
single sonar image.

III. EXPERIMENT

We evaluate the proposed fiducial marker system in
real-world underwater tank scenarios, focusing on marker
detection rate and marker ID recognition accuracy under FLS
imaging.

A. Marker Detection

Synthetic sonar images were generated using Blender
3.6.11 with a customized sonar rendering pipeline. The
simulated scenes replicate rough concrete environments with
variably positioned markers of varying IDs. Sonar-specific
phenomena were modeled, including beam divergence, sec-
ondary reflections, and Poisson–Rayleigh noise, to reduce
the sim-to-real gap. Ground-truth bounding boxes and four-
corner keypoints were automatically generated in the (r,θ)
domain and transformed to (x,y) coordinates.

A YOLOv11n-based detection model was trained to jointly
predict bounding boxes and four corner keypoints for each
marker instance. The training dataset consists of 2,000
synthetic sonar images. The model was trained for 100
epochs exclusively on this simulated dataset, without any
real sonar images involved during training. In the labeling
strategy, all fiducial markers—regardless of their individual
ID codes—were annotated as a single object class labeled
marker.

The input images for marker detection are fan-shaped
(x,y) coordinate sonar images, as illustrated in Fig. 4. These
images are generated using a forward-looking sonar simula-
tor, which produces both the simulated sonar images and the
corresponding ground-truth marker positions. The associated
YOLO-format labels are automatically computed from the
simulator’s ground-truth corner coordinates of each marker,
ensuring annotation accuracy without manual labeling.

When tested on a real-world tank dataset of 1,240 sonar
frames, the model achieved strong generalization. As sum-
marized in Table I, the system detected 1,074 true marker
instances with an average confidence score of 0.93, resulting
in a true positive detection rate of 86.6%. Only 166 true



instances were missed, primarily due to extreme occlusion
or poor contrast. No false positives were observed, demon-
strating high precision.

The experiments were conducted on an NVIDIA GeForce
RTX 4090 GPU. The end-to-end pipeline is efficient: per-
frame latency was 0.8ms for preprocessing, 4.5ms for in-
ference, and 1.2ms for postprocessing, supporting real-time
applications.

B. Marker ID Recognition

The input to the ID–recognition stage consists of approx-
imately square patches of single marker, as shown in Fig. 4.
These patches are extracted from real sonar frames that
are first converted from raw images into fan–shaped (x,y)
coordination images. Marker detection is then performed in
this (x,y) domain fan images; for each detected markers, the
four corner keypoints are used to estimate an affine transform
that rectifies the original, skewed marker region into a
normalized, near–square patch. This rectification removes
most of the projective distortion and yields a canonical layout
of the circular holes, which is essential for accurate template
matching.

In our real-world sonar image experiments, recognition is
evaluated on patches from three distinct marker IDs. To avoid
label ambiguity, we restrict the evaluation set to fully visible
markers: any patch with occlusions or truncation is discarded
beforehand. Operationally, patches exhibiting black borders
(indicative of partially captured markers due to the field-
of-view limits) are filtered out. In our water-tank experi-
ments, conducted in a 10m×10m water tank, markers were
rarely physically occluded by other objects; however, due
to viewpoint constraints, some markers appeared incomplete
within the sonar frame. We treat such incomplete captures
as partial occlusions, since portions of the marker pattern
are missing from the image. Only patches containing fully
visible markers, with all pattern elements intact, proceed to
the recognition stage.

Each valid patch is converted to a binary code by the
following deterministic procedure. The grayscale patch is re-
sized to a fixed resolution (350×350 in our implementation,
considering that the actual marker size is 0.35m× 0.35m)
and binarized.

The binarized image is then partitioned into a 4×4 grid;
for each cell (i, j), the mean binary value is computed and
mapped to a bit

bi j ∈ {0,1} with bi j =

{
1, if mean(cell)> τ,

0, otherwise,
(3)

where τ is a fixed intensity threshold applied to the binarized
image. In our experiments, we set τ = 50, selected empir-
ically after evaluating ten candidate values in the range of
0–100 and choosing the one that yielded the most reliable
detection results for our dataset. For images captured under
different environmental conditions, the threshold can be re-
adjusted accordingly to accommodate variations in illumina-
tion and acoustic characteristics.

Recognition is performed by template matching with Ham-
ming distance of a 4×4 binary matrix B yields by previous
steps. As shown in Fig. 3, the Hamming distances between
the three marker IDs are d(ID1, ID2) = 8, d(ID1, ID3) = 8,
and d(ID2, ID3) = 4. Let {T(k)} denote the predefined ID
templates (Fig. 3); for each candidate ID k, we compute

dH

(
B,T(k)

)
=

4

∑
i=1

4

∑
j=1

[
Bi j ̸= T(k)

i j

]
, (4)

and select the ID with the minimum distance, k̂ =
argmink dH(B,T(k)). We also record the distribution of Ham-
ming distances over all evaluated patches to quantify the
margin to the nearest competing template.

Table II reports accuracy over all valid (fully visible)
patches; example visualizations of the grid overlay and
predicted bits are provided in Fig. 4. This design produces
deterministic, reproducible decisions and provides an inter-
pretable error metric (Hamming distance) that correlates with
recognition reliability.

C. Discussion

The experimental results affirm the effectiveness of our
simulation-trained sonar marker system, yet also reveal sev-
eral important insights and future directions.

The quality of ID recognition depends on the accuracy
of the detected corner keypoints, since the rectified patch
is generated via homography. Small localization errors can
distort the binary layout and reduce threshold-based recogni-
tion reliability. Furthermore, although the detector achieved
a true positive detection rate of 86.6%, some true marker
instances were missed (166 out of 1,240 images). These false
negatives were primarily due to partial visibility near image
borders and background noise. To improve robustness, we
also tested a data-driven alternative by training a YOLO clas-
sifier on rectified patches. However, preliminary results on
ID1 achieved only 62 correct predictions out of 123 samples,
indicating that learning-based methods require further tuning
due to label imbalance and subtle sonar texture differences.
Improving patch alignment and combining learned classifiers
with template matching may strengthen overall recognition
performance.

One known limitation of our recognition method is that it
discards any markers that are partially visible in the sonar
image. Real-world sonar images may capture markers that
are truncated or occluded, producing incomplete regions with
missing returns. If partial occlusion affects only a single bit
at one corner, the built-in Hamming distance–based error
correction of the ID coding scheme can still recover the cor-
rect marker ID. However, as occlusion increases—covering
multiple bits or larger areas of the marker—the likelihood of
correct classification drops rapidly, and decoding may fail.
This explains why our reported 100% recognition rate is a
property of the filtered, fully visible subset of patches, rather
than a guarantee under all occlusion conditions. Furthermore,
the current implementation assumes a fixed grid layout and
predefined ID templates, which limits flexibility in dynamic
ID generation.



TABLE I
REAL-WORLD MARKER DETECTION RESULTS

Category Count Total Rate
True Positives (TP) 1074 1240 86.61%
False Negatives (FN) 166 1240 13.39%
False Positives (FP) 0 – 0.00%
Avg Confidence 0.93

This filtering strategy directly motivates the design of
our processing flow: when a marker is fully visible in the
sonar image, the four detected corners allow us to extract
a patch that preserves the complete marker geometry. This,
in turn, enables reliable ID decoding with minimal risk of
misclassification. In other words, the flow is optimized to
exploit high-quality detections when they occur, ensuring that
the downstream recognition stage operates under conditions
where it can achieve maximal accuracy. This design choice
allows the system to deliver dependable recognition results
in practical deployments, rather than attempting uncertain
predictions under degraded visibility.

For long-term deployment, the marker cannot be replaced
frequently due to its concrete–metal structure and the cost
of underwater installation. Therefore, material durability in
seawater is a critical design factor. According to Francis
et al. [14], conventional stainless steels such as 316L still
exhibit measurable pitting in natural seawater, with reported
pit depths on the order of 0.27 mm after exposure, whereas
super duplex stainless steels such as Z100 showed no de-
tectable pitting under the same conditions. This demonstrates
that super duplex alloys provide substantially higher long-
term corrosion resistance and are suitable for multi-year
underwater installations. A further practical constraint is that
the marker pattern must remain fully visible for reliable iden-
tification. In real environments, however, partial occlusion by
algae or marine vegetation is often unavoidable. To maintain
visibility, the sonar camera can be mounted on a robotic arm,
enabling adaptive viewpoint adjustment or simple clearing
motions when necessary.

In summary, the proposed framework provides a scalable
and practical solution for sonar-based underwater marker
recognition, and demonstrates the viability of simulation-
only training for real-world deployment.

IV. CONCLUSION

In this work, we proposed a fiducial marker system
designed specifically for underwater acoustic imaging. The
marker features a layered metal–concrete structure with mul-
tiple distinguishable keypoints, offering strong reflectivity
and geometric stability under sonar sensing. To enhance
generalization across simulation and real-world domains,
we trained a detection model using simulation-only data
augmented with sonar-specific artifacts such as noise and
secondary reflections.

Experimental results show that the method achieves a
marker detection rate of 86.6% on real sonar images without
false positives, and attains 100% marker ID recognition
accuracy across valid patches. The absence of false positives

TABLE II
REAL-WORLD MARKER ID RECOGNITION ON FULLY VISIBLE PATCHES

Predicted ID ID1 ID2 ID3
Image Count 496 248 248
Total Accuracy 100% (992/992)

ensures high reliability, especially in safety-critical environ-
ments. The proposed method supports real-time inference
and offers a practical, scalable solution for underwater local-
ization and inspection tasks in autonomous marine robotics.

Future work will concentrate on the precise recognition
of inner keypoints embedded within each marker, aiming to
provide a reliable reference structure for accurate 6-DoF pose
estimation. This includes designing the keypoint detection
network to achieve sub-pixel accuracy in sonar images, as
well as improving the geometric consistency of detected
keypoints under varying acoustic conditions, enabling robust
and accurate localization for underwater robotic applications.
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