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Abstract. An importance of accurate position estimation in the field of
mobile robot navigation cannot be overemphasized. In case of an outdoor
environment, a global positioning system (GPS) is widely used to mea-
sure the position of moving objects. However, the satellite based GPS
does not work indoors. In this paper, we propose a novel indoor posi-
tioning system (IPS) that uses calibrated camera sensors and 3D map
information. The IPS information is obtained by generating a bird’s-eye
image from multiple camera images; thus, our proposed IPS can provide
accurate position information when the moving object is detected from
multiple camera views. We evaluate the proposed IPS in a real envi-
ronment in a wireless camera sensor network. The results demonstrate
that the proposed IPS based on the camera sensor network can provide
accurate position information of moving objects.

Keywords: global positioning system, indoor positioning system, cam-
era network, mobile robot

1 Introduction

This paper proposes an indoor positioning system (IPS) that uses calibrated
camera sensor networks for mobile robot navigation. Most navigation functions
that allow mobile robots to operate in indoor environments were performed
based on only map information built by simultaneous localization and map-
ping (SLAM) schemes. Recently, however, robots are expected to be operated
in human-robot coexistence environments. The map information is static; hence
it is hard to deal with human-robot coexistence environments since it cannot
reflect dynamic changes in the environment.

On the other hand, a distributed camera network system can monitor what is
occurring in the environment and many automatic calibration schemes for such
systems have been proposed in [8, 9]. Such system is able to manage environmen-
tal changes (e.g., moving objects) by processing image data from the distributed
camera networks in real time; therefore, many of the problems encountered by
classical mobile robot navigation can be improved by integrating both the static
map information and the dynamic information from the calibrated camera sensor
networks. The satellite based global positioning system (GPS) can greatly im-
prove solutions to the positioning problem in an outdoor environment; however,
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Fig. 1. Overall process to generate global bird’s-eye image.

the GPS does not work indoors. In this respect, many IPS technologies that use
different signals (e.g., Wi-Fi, electromagnetic, radio, and so on) are developed
[4, 3]. However, many limitations such as the strength of the signal, accuracy,
multi reflection phenomenon remain unanswered.

Therefore, in order to realize a reliable IPS, we propose a novel approach
that uses both distributed camera sensor networks and 3D map information
of the environment. The 3D map information contains the information for the
entire environment based on the world coordinate frame, and thus it can provide
information on any point. Such map information can be easily obtained from
the blueprint of the artificial environment (e.g., CAD data) or a traditional
SLAM schemes. In addition, generating a bird’s-eye image from camera networks
is one of the effective methods to provide IPS in the case of a typical indoor
environment. A bird’s-eye image is an elevated view of the environment. It is able
to provide sufficient information when mobile robots navigate in a typical indoor
environment because the ground is flat, and thus the height can be ignored. In
our research, therefore, the position signal is calculated by using overlapping
zones, which are detected from the generated bird’s-eye image.

The remainder of this paper is organized as follows. Section 2 describes the
generation method of the global bird’s-eye image to generate IPS information
based on the calibrated camera network system in detail. Then, positioning
method for the IPS information with the generated global bird’s-eye image is
presented in section 3. The proposed IPS is validated with experiments for path
planning of the mobile robot in sections 4. Finally, section 5 gives the conclusions.
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2 Bird’s-eye Image Generation

In this paper, to facilitate the monitoring of the entire environment, each of the
calibrated camera images is transformed to local bird’s-eye images that are taken
from a user-define virtual camera, and then integrated into a global bird’s-eye
image. Figure 1 shows the overall process to generate the global bird’s-eye image.
Here, by way of example, three image data from camera networks are considered.
First, floor detection process is performed to remove areas other than the floor
using real camera images and predicted depth images generated from the camera
poses (i.e., calibrated external camera parameters) and the 3D map information.
Next, each of the generated floor images are converted into corresponding local
bird’s-eye images through an inverse perspective mapping and integrated into a
global bird’s-eye image. One of the notable features of this processing is that,
with a distributed camera system, with accurately calibrated parameters based
on the 3D map information, it is possible to generate RGB-D images (i.e., a
RGB color image with a depth image) which provides 3D information, whereas
only 2D image data cannot by itself provide 3D information. In this approach,
the depth image generated from the 3D map information cannot mirror the
dynamic information in real time because it is based on a static model; however,
the RGB image is updated in real time. Therefore, even if this system cannot
provide real time 3D information, it is able to handle 3D-like processing by
utilizing overlapping areas from multiple camera images on an assumption that
the ground is flat. Finally, the system performs positioning of IPS signal by using
the generated global bird’s-eye images.

2.1 Floor Detection

In order to detect the floor area in each of the real camera images captured by
the camera sensor networks, first, height images IH

R(w) are generated from both,

the camera poses w = [xc yc zc ψc θc φc]
> and the 3D map information. Then,

the real camera images IR(w) (Fig. 2 (a)) are converted into floor images IF
R(w)

(Fig. 2 (d)) using the height images IH
R(w) (Fig. 2 (c)) as bounding values:

IF
R(w(k))(u, v)=

{
IR(w(k))(u, v) IH

R(w(k))(u, v)<0+ε

0 otherwise
, (1)

where k represents camera index. ε denotes the error constant which is added
to take the camera calibration error into consideration. Thus, Eq. (1) removes
regions other than the floor or those which heights are close to zero (the height
of the floor surface is assumed to be zero in this study) from the real camera
images IR(w). It is reasonable to remove areas other than the floor given that
the moving objects generally walk on the floor in a typical indoor environment.

The detailed process for the floor detection for the real camera image is as
follows. First, each depth image ID

R(w) is generated from the camera poses and
the 3D map information as shown in Fig. 2 (b). Here, an important point to
emphasize is that, with a distributed camera system with accurately calibrated
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Fig. 2. Floor detection process: (a) real camera images IR(w) captured from camera
sensor networks, (b) predicted depth images ID

R(w) that correspond to real camera

images IR(w) generated by 3D map information, (c) height images IH
R(w) that corre-

spond to real camera images IR(w), and (d) floor images IF
R(w) where regions other

than the floor have been removed.

parameters and 3D map information, it is possible to generate RGB-D-like im-
ages even if a typical optical camera cannot directly obtain the depth information
as mentioned before.

Next, each of height images IH
R(w) (Fig. 2 (c)) that contain corresponding

height information for each pixel are generated as follow:

IH
R(w)(u, v) = zc −C x sin θc+Cy cos θc sinψc

+ Cz cos θc sinψc, (2)
Cx = ID

R(w)(u, v), (3)

Cy =
(u− cu)ID

R(w)(u, v)

fu
, (4)

Cz =
(cv − v)ID

R(w)(u, v)

fv
. (5)

Equations (3)–(5) convert 2D pixel information (u, v) to 3D data (Cx,C y,C z)
based on the local camera coordinate frame using the pixel information of the
depth image ID

R(w). Here, the superscript C indicates the local camera coordi-

nate frame. w = [xc yc zc ψc θc φc]
> represents the camera pose with respect to

the world coordinate frame {W }. fu and fv denote focal lengths. Equation (2)
refers to the coordinate transformation from camera coordinate frame to world
coordinate frame {W } for the height value. Finally, the floor images IF

R(w)

(Fig. 2 (d)) are generated by applying Eq. (1). The coordinate system adopted
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Fig. 3. Perspective transformations between floor plane, real camera images and bird’s-
eye image for virtual camera.

in this study is described in detail in Fig. 3. Note that the optical axis is defined
as x-axis in the camera coordinate frame in this paper.

2.2 Inverse Perspective Mapping

In order to generate local bird’s-eye images from each camera, an inverse per-
spective mapping is exploited. The inverse perspective mapping removes per-
spective effects under the assumption that the ground is flat; therefore making
environment monitoring more efficient [1]. In this study, the inverse perspective
mapping is applied to each of the generated floor images IF

R(w). This is done
as it is assumed that the mobile robot navigates on the floor area in a typical
indoor environment.

The bird’s-eye image is generated by image processing based on the princi-
ple of geometrical perspective transformation for the captured real image. The
principle used to convert real camera images to bird’s-eye images for a virtual
viewpoint is as follows. Figure 3 illustrates perspective transformations between
each real camera and a user-define virtual camera that represents the relationship
between a world coordinate frame {W }, real camera images coordinate frames
{R}, and virtual bird’s-eye image coordinate frame {B}. Each relationship is
described using transformation matrices. First, a relational expression between
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Fig. 4. Local bird’s-eye images IF
B(w) corresponding to floor images IF

R(w).

Wx = [x y z 1]> and Ru = [Ru Rv s]> is defined as follow:

Ru = RQW
WxRu

Rv
s

 =

h11 h12 h13 h14h21 h22 h23 h24
h31 h32 h33 h34



Wx
W y
W z
1

 , (6)

where s denotes a scale factor. The expression can be further simplified under
the assumption that the height of the floor surface is zero (i.e., Wz = 0), then:

Ru = RHW
W x̃Ru

Rv
s

 =

h11 h12 h14h21 h22 h24
h31 h32 h34

Wx
W y
1

 , (7)

where W x̃ = [Wx W y 1]> is the position vector on the world coordinate frame
excepting the z element. The matrix RHW is called homography matrix in the
geometric field. It is possible to project one surface onto another through this
homography matrix.

In the same manner, a relational expression between W x̃ = [Wx W y 1]> and
Bu = [Bu Bv s]> is also defined:

Bu = BHW
W x̃, (8)

where BHW is the homography matrix between the world coordinate frame
{W } and the bird’s-eye image coordinate frame {B} when the height of the
projection plane is zero.

Finally, substituting Eq. (8) into Eq. (7) yields the relation between the real
image coordinate frame {R} and the bird’s-eye image coordinate frame {B}:

Bu = BHR
Ru. (9)

As shown in Eq. (9), the homography matrix BHR performs inverse perspective
mapping (i.e., the transforming the real camera image into the local bird’s-
eye image). It is very easy to calibrate the 3 × 3 homography matrix BHR by
randomly selecting more than 4 points (i.e., at least four Wx) that are com-
monly observed in the real camera image {R} and the bird’s-eye image {B}
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Fig. 5. Integrated global bird’s-eye images GIF
B(w).

because pre-given 3D map information contains the information for the entire
environment based on the world coordinate frame {W }, and thus it can provide
information on any point.

Figure 4 shows each local bird’s-eye image IF
B(w) that is generated by ap-

plying each calibrated homography matrix BHR to the floor image IF
R(w). In

this case, the virtual camera pose was set to the high position at the center of
the entire environment.

2.3 Integration of Local Bird’s-eye Images

After generating each of the local bird’s-eye images IF
B(w) by applying the inverse

perspective mapping, these images are combined together to create a global
bird’s-eye image GIF

B(w) that is viewed from direct observation at high location,
as follow:

GIF
B(w)(u, v) = GIF

B(w(k∗))(
Bu∗,B v∗), (10)Bu∗

Bv∗

1

 = BHR(k∗)

Ru∗
Rv∗

1

 , (11)

(k∗,R u∗,R v∗) = arg min
k,u,v

[
ID
R(w(k))(u, v)

]
. (12)

Equations (10)–(12) mean that when the same point is observed by multiple
cameras, the information encoded from the pixel which has the shortest distance
to its camera’s optical axis is used. Here, k refers to the camera index (i.e., 1–3
in this example). To calculate the shortest distance, the depth images ID

R(w)

for each camera are utilized again here. This is justified as the distortion of the
bird’s-eye image is smaller when the physical distance in real space is closer.

Figure 5 shows the combined global bird’s-eye image GIF
B(w) that is gener-

ated by applying Eqs. (10)–(12). Using this approach, it is possible to observe
the entire area of the floor that is captured by the camera sensor networks intu-
itively. Furthermore, the proposed global bird’s-eye image can be of great service
to moving object’s positioning. This will be presented in the following section.
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3 Positioning method for IPS

This section describes positioning method for the proposed IPS by using the
generated global bird’s-eye image. In this paper, the background subtraction
method is used for recognizing moving objects in the image planes. Among the
many background subtraction methods, mixture Gaussian model-based method
has been used for this study [12]. Red areas in Figs. 2 (a), 2 (d), 4, and 5 show
each detection result after applying the background subtraction. As we can see
in Fig. 4, the detected objects from single cameras are significantly distorted
in the local bird’s-eye images because 3D viewpoint transformation is forcibly
preformed for the 2D image data in order to generate the local bird’s-eye images.
These distortion effects are obviously inefficient in terms of reliable obstacle
detection.

In Fig. 5, the dark red areas are the overlapping zones that represent detected
moving objects from the multiple camera network. In this study, the distortion
effect is solved by taking advantage of these overlapping areas. Thus, if the
moving objects are observed from two or more cameras, the distortion effects
can be corrected as shown in Fig. 6. 3D-like positioning can be performed in this
case without a tedious and convoluted stereo measurement task when the height
of the floor can be assumed constant value through the 3D map information.

The principle used to correct these distortions is illustrated in Fig. 6. In con-
trast to stereo cameras, a single camera cannot measure the distance to the object
directly. However, if the object is observed from (i.e., detected from background
subtraction in this study) multiple cameras from different viewpoints, then the
uncertainty of the distance (i.e., existence region) will be significantly reduced.
Note that there is a thread of connections between this principle and well-known
monocular SLAM with a single camera [5]. In the global bird’s-eye image with
the proposed combined method can remove distortion effects very intuitively,
whereas monocular SLAM schemes use convoluted probabilistic processes.

The detected results are composed of pixel coordinates in the global bird’s-eye
image frame {B}; thus, the detected regions BuIPS as pixel coordinates should
be transformed to those of real coordinates W x̃IPS through the homography

Fig. 6. Principle of distortion removal based on multiple camera observations from
different viewpoints: (a) object detected from one camera, (b) object detected from
two cameras.
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Fig. 7. Probability distribution PIPS(x) for the existence of moving object detected by
proposed IPS system.

matrix WHB :

W x̃IPS =
(
BHW

)−1BuIPS

= WHB
BuIPS. (13)

Here, BHW is defined on user-defined internal parameter matrix and external
parameter matrix which represents virtual camera pose for generating the bird’s-
eye image. Here, its 3rd row vector is excluded because the height of the ground
plane is defined as zero. Next, the coordinates W x̃IPS detected as the moving
objects are converted into a probability distribution function through Kernel
density estimation:

PIPS(x) =
1

NhD

N∑
i=1

K

(
x− x

(i)
IPS

h

)
, (14)

K(x) =
1

(2π)D/2
exp

(
−1

2
x>x

)
, (15)

where x
(i)
IPS and N denote the coordinates of the detected zone and the number of

detected pixels BuIPS in the global bird’s-eye image. From here, the superscript
W which represents world coordinate frame is omitted. h and D are a smoothing
parameter and the point dimensions (two in this case), respectively. Equation
(15) represents typical O mean and I covariance Gaussian Kernel function K(·)
which is applied to manage several noises owing to errors from camera calibra-
tion, background subtraction, and so on. Figure 7 shows generated final IPS
information PIPS(x), which represents the existence probability distributions of
the moving objects detected by multiple camera sensor networks.
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4 Experimental result for safe path generation

This section presents an experimental result for safe path generation in a human-
robot coexistence environment based on a gradient method with 3D map infor-
mation and the information from camera sensor networks. Most obstacle avoid-
ance schemes were based on processing on-board sensor (i.e., a sensor mounted
on robot’s body) information so far, and thus these cannot deal with invisible
obstacles because of the sensing scope. In this study, therefore, in order to take
invisible dynamic obstacles into consideration, occluded obstacles are detected
by processing the global bird’s-eye view image generated from camera sensor
networks installed in the human-robot coexistence environment. In other words,
this section assumes that generated IPS information represents the positions of
the obstacles. The possibility of collision is basically reflected to path generation
and motion control algorithms. Major scope in this section is generating safe
paths for the mobile robot, taking not only visible obstacles but also occluded
moving obstacles into consideration. Most path planning methods generate opti-
mal paths based on only visible obstacles and the optimality is basically defined
in terms of distance from a current robot position to a goal position. However,
the shortest path might be not the safest path for the robot motion. The path
should reflect the risk of possible collision with occluded invisible obstacles. To
this end, the proposed path generation scheme calculates posterior existence
probabilities of dynamic obstacles including occluded ones to redefine the cost
function of a gradient method [13]. By exploiting the redefined cost function, safe
path taking dynamic obstacles’ existence probabilities into account is generated.

The gradient method generates a minimum distance path without local min-
ima problem, and it is the most widely used method. The original gradient
method generates an optimal path based on intrinsic costs and adjacency costs
which are allocated to every grids of the map information. The intrinsic costs
are assigned for the distance from the static obstacles which are represented in
the map information and the adjacency costs are assigned for the distance from
the goal position. In addition to these costs, the modified gradient method pro-
posed in this study calculates an additional risk costs that correspond to moving
obstacles which are detected by the global bird’s-eye view image generated from
the multiple camera images. This is done in order to perform safer path planning
also considering occluded zones in real time. Here, the probability distribution
PIPS(x) (i.e., IPS information) which is computed by Eqs. (14) and (15) can
be directly exploited, as the additional risk cost relates to the existence prob-
ability for the moving obstacles in the entire environment. What this entail is
that positions which have high value of PIPS(x) are more likely have a moving
obstacle.

The experiments were conducted under the same conditions using two dif-
ferent methods: the conventional gradient method considering only the intrinsic
cost and the adjacency cost and the proposed modified gradient method consid-
ering the additional risk cost representing the moving obstacles. The generated
path using each method is illustrated in Fig. 8. The generated path using the
conventional gradient method generates an unsafe path (blue lines in Fig. 8)
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Fig. 8. Experimental results for path generation. Blue and red lines represent generated
paths using typical gradient method and modified gradient method, respectively.

around the moving obstacles because the static model (i.e., the map informa-
tion) cannot manage the dynamic information in real time, and thus it cannot
be reflected in the intrinsic cost for the gradient method. On the other hand,
the modified gradient method produced a safer path (red lines in Fig. 8) taking
moving obstacles into account as the risk costs for the moving objects detected
from the global bird’s-eye view image were calculated and applied to the total
navigation costs for optimal path generation. In conclusion, the proposed path
planning scheme based on the modified gradient method considering occluded
moving obstacles is expected to reduce collision risk in terms of the mobile
robot’s motion control.

5 Conclusion

This paper proposed a novel IPS that uses distributed camera sensor networks
for the mobile robot navigation. In order to generate reliable IPS information
from the camera networks, a novel method to generate a global bird’s-eye im-
age was proposed by using 3D map information. Here, homography matrices for
transforming each real image to each local bird’s-eye image were automatically
calibrated using 3D map information which had all 3D coordinate data for the
entire environment. The global bird’s-eye view image generated from the multi-
ple camera images was used to detect moving obstacles (i.e., generation of IPS
information), and the following conclusion was drawn.

The typical path planning methods so far cannot manage occluded obstacles
due to limitations of the on-board sensor’s sensing scope. By using the infor-
mation of the moving obstacles detected as an additional cost function to the
gradient method, a safer path can be generated. Thus, mobile robots are ex-
pected to reduce their collision risks.

Future work will involve solving a problem of the optimal distributed camera
placement by maximizing the coverage of the demands.
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