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Abstract. We propose a novel path planning method considering pose
errors for off-road mobile robots based on 3D terrain map information.
Mobile robots navigating on rough terrain cannot follow a planned path
perfectly because of uncertainties such as pose errors. In this work, we
represent such pose errors as error ellipsoids to use on collision check with
obstacles in a map. The error ellipsoids are estimated based on extended
Kalman filter (EKF) that integrates motion errors and global positioning
systems (GPS) observation errors. Simulation and experiment results
show that the proposed method enables mobile robots to generate a
robust path against pose errors in a large-scale rough terrain map.
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1 Introduction

Disaster response activities are important to save human lives and resources. In
recent years, mobile robots equipped with sensors such as a camera are used
when disasters occur. Mobile robots are usually operated by a remote control
when human cannot enter environments that are damaged by disasters. How-
ever, a remote control has limitations because an operator is hard to recog-
nize a surrounding environment with information through a camera. Therefore,
autonomous mobile robots that are able to plan a safe path avoiding danger-
ous areas are needed. In 2004 and 2005, DARPA (Defense Advanced Research
Projects Agency) held DARPA ground challenge [1]. In this challenge, a lot of
mobile robots tried to run a long way of 150 miles in rough terrain and five
robots finished. These robots were provided the navigation path in advance. In
case of a disaster situation, feasible path for mobile robots cannot be provided
before a disaster occurs and given that we can only get very limited environment
information. Hence, the path planning method which generates safe paths for
mobile robots in rough terrains is very important.
Kuwata et al. proposed a real time motion planning method for autonomous
cars [2]. They classified environment maps according to a risk of collision. More-
over, they reduced calculation time by preserving a former result and using it



during a next motion planning. Richter et al. proposed a path planning method
for autonomous cars with a self-position estimation [3]. They set high risk al-
lowances in areas where the cars did not construct environment maps in order not
to plan paths in uncertain areas. Nevertheless, these methods mentioned above
assumed 2D environments that cannot deal with rough terrain. In this respect,
Ji et al. proposed the broad path planning method on a 3D environment map
for mobile robots traveling rough terrain [4]. In this study, a motion model of
a mobile robot was considered; hence, it was possible to generate feasible paths
for navigation. Moreover, they avoided the problem of generating a path that
could cause the robots to fall down by restricting robot angles of a inclination
and radii of a gyration during the path planning. However, robot pose errors
that should be managed for actual operation of the robot were not considered.
Generally, mobile robots are affected by pose errors in many respects while navi-
gating in the real environment. Thus, the robot cannot follow the generated path
perfectly due to the pose errors. If the generated path is close to obstacles, the
robot may collide with the obstacles. To take the pose errors into account during
path planning, van den Berg et al. proposed path a planning method that consid-
ers motion uncertainty and imperfect sensors [5]. They calculated probability of
collision with generated paths and map to judge validations of paths. However,
they also assumed 2D environments. Blackmore et al. and Lee et.al. proposed
optimal robust path planning methods that use the random sampling integrated
with chance constraints [6, 7]. Chance constraints enable to restrict probabilities
of collision with obstacles by satisfying constraint equations. However, chance
constraints can be calculated only when obstacles are convex polyhedrons and
they assumed only 2D environments. There are many obstacles of various shapes
in rough terrain; thus, this method cannot be applied when disaster occurs.
In this study, we propose a safe path planning method for mobile robots in a
rough terrain when pose errors affect robots. The remainder of this paper is
organized as follows. Sections II introduces the problem definition and approach
of the proposed robust path planning. Then, the method of an error estimation
is presented in Section III. Section IV introduces the sampling method consider-
ing the robot acceleration. The validity of the proposed path planning method is
evaluated with the simulation and real experimental results in Section V. Finally,
Section VI gives conclusions of this paper.

2 Approach

In this study, we propose a novel path planning scheme that can manage pose
errors under the assumption that a four-wheeled vehicle as a mobile robot has a
map of an entire environment consisting of 3D point cloud data in advance. An
environment map is measured by unmanned aerial vehicles (UAV) in advance.

Figure 1(a) shows an example of a 3D point cloud of a rough terrain. This
robot is expressed in six dimensional configurations, position information (x, y, z)
and orientation angles (φ, θ, ψ) around axes, as shown in Fig. 1(b). Moreover,
acceleration are restricted so as not to make movements that robots cannot
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Fig. 1: Assumptions of proposed path planning method.

handle. Maximum inclination angles of slopes are also restricted according to
robot velocities; hence paths must select routes with lower angle than maxi-
mums. We also assume that the robot is equipped with two global positioning
systems (GPS); hence, it can obtain its position and orientation information.
In our previous work [4], we assumed that GPS sensors obtain true values of
robot poses and a mobile robot can follow generated path, perfectly. However,
as mentioned in Section 1, the robot is generally affected by observation errors
of GPS and motion errors in real environments. In this study, we regard these
two errors as pose errors. By taking the pose errors into consideration, the gen-
erated path produced by our proposed scheme ensures safety even if the mobile
deviates from the planed path.
We use the random sampling algorithm [8] in the path planning method. The ran-
dom sampling-based method cannot find optimal path; however, it can explore a
map of large environment, quickly. The random sampling algorithm performs a
path planning by generating robot configurations as new nodes and connecting
them to existing ones. In the proposed method, robot velocities and angular ve-
locities are sampled and nodes corresponding to robot poses are generated using
a robot motion model. We defined paths avoiding collisions with obstacles even
pose errors affect as robust paths. To consider effects of pose errors during a
path planning, we adopted to estimate pose errors after each node are generated
and to converted pose errors to error ellipsoids. We assumed average of GPS
data equal generated node because mobile robots correct its position by the lo-
cal control. Figure 2 shows the flowchart of our random sampling algorithm. In
a conventional random sampling method, generated nodes are judged without
the error estimation. On the other hand, in our random sampling algorithm, we
estimate motion errors and observation errors by converting them into one error
ellipsoid after generating each node. Error ellipsoids are used to judge validation
of nodes by checking collisions with a 3D environment map. We also propose
a new sampling method of robot velocities. This method enables to plan safe
paths that mobile robots can follow.
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Fig. 2: Flowchart of proposed random sampling algorithm.

3 Error estimation

3.1 Pose error estimation of each node

The mobile robot generally obtains pose information from GPS and controlled
by control input data to moves to the target position. In our random sampling
algorithm, nodes corresponding to robot poses are generated assuming control
inputs data and connected to existing ones. Within components of nodes, the
robot position (xt, yt) and the yaw angle ψt are sampled by using the motion
model. The position zt, the roll angleφt and pitch angle θt are determined from
map information. When control input data ut = (vt, ωt) is given, the robot pose
at time t xt = (xt, yt, ψt) is given as the following motion model.

xt = f(xt−1, ut) =


xt−1 + vt∆t cos

(
ψt−1 + ωt∆t

2

)
yt−1 + vt∆t sin

(
ψt−1 + ωt∆t

2

)
ψt−1 + ωt∆t

 . (1)

However, the mobile robot cannot perform the expected operation because of
the pose errors consisting of observation errors and motion errors. Therefore,
estimating pose errors is important to plan safe path for mobile robots. The
observation errors occur when the mobile robot obtains pose information from
the GPS and the motion errors occur when the mobile robot moves based on
the control input data. We integrate these motion errors and observation errors



into pose errors represented by an error ellipse. We estimate pose errors by using
extended Kalman filter (EKF) [9] during path planning because it can integrate
errors with different characteristics. EKF process is divided into two steps and
the motion error and observation error are calculated in each step.

EKF prediction step In prediction step, a robot motion error is estimated.
The motion error is determined by using Jacobian J derived from the motion
model of the mobile robot f . The Jacobians Jx corresponding the robot pose
and Ju corresponding to the control input are given as follows:

Jx =
∂f

∂x
, (2)

Ju =
∂f

∂u
. (3)

The motion error at time t is expressed as the covariance matrix as follows:

Σ̄xt = JxtΣxt−1Jxt
T + JutΣutJut

T , (4)

where Σ̄xt is robot covariance matrix after applying motion error and Σut is in-
put covariance. Each Σut is determined based on a robot position and a satellite
arrangement. Σxt−1 denotes covariance matrix corresponding to the pose error
at previous time step t-1.

EKF update step In this step, the covariance matrix Σ̄x calculated in predic-
tion step is updated by using GPS observation errors. The updated covariance
matrix Σx is given as follows:

St = HtΣ̄xt(Ht)
T + Qt, (5)

Kt = Σ̄xt(Ht)
T (St)

−1, (6)

Σxt = (I − KtHt)Σ̄xt. (7)

Here, Q is as covariance matrix of the observation error and H is Jacobian of
GPS observation. H is matrix which defines relationship between the observed
value and the robot pose. In this case, observed values represent robot pose
directly; thus, H is same to the identity matrix. S is observation uncertainty
and K is Kalman gain. During the path planning, we use Σxt in collision check
and it is described in detail in next sebsection.

3.2 Collision check using error ellipsoid

The random sampling method judge validations of generated nodes by checking
collisions with a map and angle values of a robot inclination. Our previous study



conducted collision checks between a map and a robot model with the fixed size,
as shown in Fig. 3(a) [4]. Therefore, this method often generated nodes that
were close to obstacles. In order to solve this problem, we propose the method
that converts estimated pose errors to error ellipsoids and uses them in collision
check. Figure 3(b) shows our collision check of the generated node during the
random sampling. The proposed method checks collision with error ellipsoids
and 3D object, directly. Error ellipsoids changes their sizes feasibly based on
pose errors of a robot. Therefore, the proposed method can delete dangerous
nodes that may collide because of pose errors. In the collision check, we use a
flexible collision library (FCL) [10], the C++ library of collision detection.
Figure 4 shows the concept of our proposed random sampling scheme. In gray
areas, GPS signals are not available and robots cannot identify their own poses.
Figure 4(a) shows a conventional random sampling method checking collisions
with maps and robot models fixed their sizes. Thus, this method often plans
paths that are close to obstacles. On the other hand, we can plan a path con-
sidering the observation error and the motion error of mobile robots all at once.
Hence, for example, safer path planning can be performed depending on different
motion errors and a GPS situation, as shown in Fig. 4(b).

Obstacle

Node

(a) Previous method that uses
fixed robot size [4]

Error ellipsoid

(b) Proposed method that uses error
ellipsoid

Fig. 3: Collision check of generated node.
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4 Sampling method of velocity

In this section, we describe the novel sampling method of robot velocities (i.e.,
control input data at node sampling). Our method samples the robot velocities
and generate nodes that correspond to robot poses using the motion model. In
the previous method [4], velocities are determined based on fixed probability
distribution. They did not consider accelerations; hence, it often samples veloci-
ties exceeding the limit. Figure 5 shows the proposed sampling method of robot
velocities. We determine a position of probability distribution of velocity based
on the former one velocity value and determine a range based on the robot accel-
eration as shown in Fig. 5(a). Probability distribution of each sampling is shown
in Fig. 5(b). It is mixed with normal distribution and uniform distribution. This
method enables to restrict accelerations and plan paths that robots can follow.

5 Simulation

5.1 Simulation setting

In order to varify the effectiveness of the proposed path planner, we conducted
simulations. A desktop computer with Intel core i7-6700 (3.40 GHz) CPU and
16.0 GB RAM memory was used to execute the proposed path planner. We used
two maps in our simulation experiments The size of the map 1 that has rough
terrain was 200 m2. There were a 5 m narrow route to the left and a 12 m broad
route to the right. The size of the map 2 was 100 m2. There was a tunnel with
a height of 7 m and a length of 30 m to the left. We assumed that the mobile
robot was not able to get GPS information in the tunnel. We used path-directed
subdivision tree (PDST) as a random sampling planner that determines how
nodes are generated [11]. The robot was not able to follow if its acceleration was
greater than 2.78 m/s2. Moreover, we assumed that the standard deviation of
the GPS observation was 1.0 m in position and 1.0 deg in orientation. Velocity
errors of 10 % occurred. In addition, we also conducted the simulation with small
velocity errors of 1 % in map 2. The sizes of the error ellipsoids were determined
so that the mobile robot existed in ellipsoids with a probability of 95 %.
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Fig. 5: Proposed sampling method.



5.2 Simulation result

Figure 6(a) shows the generated path using the proposed method on map 1.
The generated path is expressed in yellow line and error ellipsoids are expressed
in blue lines. The proposed method was able to plan the safe path that error
ellipsoid did not collide with the obstacles in the rough terrain. Further, the
acceleration of the mobile robot kept within the limit as shown in Fig. 6(b).
Figure 7 shows generated paths through five repeated simulations on map 1. The
proposed methods generated each paths in less than five seconds. The previous
method planed two paths that passed through a dangerous narrow route. On
the other hand, all five paths generated by the proposed method avoided the
dangerous. Moreover, the proposed method did not generate detour paths.
Figure 8 shows the difference of generated paths depending on motion error
values on map 2. When the set motion error was small, it planed the path that
passed through a tunnel because pose errors did not accumulate so much in the
tunnel. On the other hand, when the set motion error was large, it planed the
path that avoid a tunnel because the path planning method was not able to find a
path avoiding collision in the tunnel. Figure 9 shows the difference in area where
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Fig. 8: Difference of generated paths depending on motion error values on map 2.
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(a) Nodes for velocity errors of 1 % (b) Nodes for velocity errors of 10 %

Fig. 9: Difference of generated nodes depending on motion error values on map 2.

nodes are generated on map 2. Here, nodes generated during path planning are
expressed in red points. Nodes generated during path planning are expressed in
red points. When the mobile robot cannot get GPS information, EKF cannot
conduct the update step. For this reason, the motion error accumulated in the
tunnel. Error ellipsoids will be larger than the tunnel when the motion error
is large; hence, the proposed method did not generated nodes in the tunnel.
However, error ellipsoids will not become very large when the motion error is
small; hence, it generated nodes there. Therefore, the proposed method planed
feasible paths that suitable for mobile robots errors.

6 Experiment

6.1 Experiment setting

Figure 10 shows path planning result for the field experiment. The size of the
map was 50 m2. There were a 2 m narrow route to the left and a 12 m broad
route to the right. As shown in Fig. 10(b)., the proposed method generated a safe
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Fig. 11: Overview of field experiment.

path that passes through the broad route. The experimental environment and
the mobile robot used for the field experiment are shown in Fig. 11. In order to
install obstacles on the map as shown in Fig. 10, we used cones as obstacles in the
field. The mobile robot was equipped with two GPS sensors; thus, it can obtain
pose information. We assumed that observation errors of GPS followed a normal
distribution and its standard deviations were 1.0 m in position and 1.0 deg in
angle Moreover, we assumed that standard deviations of motion errors set at
10 % of robot input velocity.

6.2 Experiment result

Figure 12 shows the result of field experiment. The mobile robot traveled in
order of (a) to (d). The robot was able to travel safely along the path generated
in Fig. 10(b). Thus, we confirmed that the proposed path planning method is
able to plan safe paths in real environments.
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Fig. 12: Result of field experiment.

7 Conclusion

We proposed the robust path planning method against pose errors for mobile
robots. In the proposed method, we used EKF to estimate pose errors and
checked collisions with error ellipsoid. This enables to find feasible paths tak-
ing the pose errors into consideration. Moreover, the proposed velocity sampling
method can generate the paths based on the acceleration that the actual mobile
robots can deal with.
The future work related to this study is to conduct online path planning. In
this study, we assumed that the map information were given in advance. How-
ever, real terrain information may change while mobile robots are navigating.
Therefore, in case of real applications, it is necessary to propose an effective
method which processes surrounding environment maps and generate feasible
path simultaneously.

Acknowledgement

This work was in part funded by ImPACT Program of Council for Science,
Technology and Innovation (Cabinet Office, Government of Japan).

References

1. DARPA (Defense Advanced Research Projects Agency): Grand Challenge 2005
Report to Congress. http://archive.darpa.mil/grandchallenge/docs/grand_

challenge_2005_report_to_congress.pdf, 2006.



2. Kuwata Y.,Teo J., Fiore G., Karaman S., Frazzoli E. and How J P.: Real-Time Mo-
tion Planning with Applications to Autonomous Urban Driving. IEEE Transactions
on Control System Technology, Vol. 15, pp. 1105–1118, 2009.

3. Richter C., Ware J. and Roy N.: High-Speed Autonomous Navigation of Unknown
Environments Using Learned Probabilities of Collision. Proceedings of the 2014
IEEE International Conference on Robotics and Automation, pp. 6114–6121, 2014.

4. Ji Y., Tanaka Y., Tamura Y., Kimura M., Umemura A., Kanashima Y., Murakami
H., Yamashita A. and Asama H.: Adaptive Motion Planning Based on Vehicle Char-
acteristics and Regulations for Off-Road UGVs. IEEE Transactions on Industrial
Informatics. (under review).

5. van den Berg J., Abbeel P. and Goldberg K.: LQG-MP: Optimized Path Planning for
Robots with Motion Uncertainty and Imperfect State Information. the International
Journal of Robotics Research, Vol. 30, Issue 7, pp. 895–913, 2011.

6. Blackmore L., Li H. and Williams B.: A Probabilistic Approach to Optimal Robust
Path Planning with Obstacles. Proceedings of the American Control Conference,
pp.7–13, 2011.

7. Lee S. U. and Iagnemma K.: Robust Motion Planning Methodology for Autonomous
Tracked Vehicles in Rough Environment Using Online Slip Estimation. Proceedings
of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 3589–3594, 2016.

8. LaValle S. M.: Rapidly-Exploring Random Trees: A New Tool for Path Planning.
Computer Science Department, Iowa State University, Technical Report TR 98-11,
pp. 1–4, 1998.

9. Greg W. and Gary B.: An Introduction to the Kalman Filter. Proceedings of ACM
SIGGRAPH, Course 8, 2001.

10. Pan J., Chitta S. and Manocha D.: FCL: A General Purpose Library for Collision
and Proximity Queries. Proceedings of the 2012 IEEE International Conference on
Robotics and Automation, pp.3859–3866, 2012.

11. Ladd A. M. and Kavraki L. E.: Fast Tree-Based Exploration of State Space for
Robots with Dynamics. Algorithmic Foundations of Robotics VI, pp. 297–312, 2004.


