マニピュレータ搭載のレーザレンジファインダによる 水中物体の3次元形状計測

3-D Measurement of Objects in Water by a Laser Range Finder Held by a Manipulator

池田 真輔† 山下 淳† 金子 透†

Shinsuke IKEDA[†], Atsushi YAMASHITA[†], Toru KANEKO[†] [†]静岡大学工学部機械工学科 [†]Department of Mechanical Engineering, Shizuoka University E-mail: f0330008@ipc.shizuoka.ac.jp

Abstract

水槽容器中の物体を空気中から観測してその3次元 形状を計測する場合,光の屈折現象を考慮した解析処 理が必要となるが,そのためには屈折率の不連続面で ある水槽容器表面の形状を知ることが不可欠である. 本論文では,マニピュレータ搭載のレーザレンジファ インダを移動することにより,水中物体表面の計測点 の集合と同時に容器表面の点の集合が得られることを 利用して,最初に容器形状を推定し,その後に水中物 体の3次元計測を行う計測手法を提案する.

1 序論

物体の3次元計測は画像処理分野において重要なテ ーマの1つとして挙げられ,物体計測法の一般的な手 法として三角測量の原理が広く利用されている.従来 の画像処理を用いた3次元計測法は,撮影機器,計測 対象が共に同一屈折率環境下にあることを前提として いる.しかし,例えば水槽容器中の物体を空気中から 観測して,その形状を計測した場合,光の屈折の影響 により正確な計測は困難となる.この現象は,海中な どに防水ケースで保護されたカメラを沈めて3次元計 測を行う場合にも,防水ケースのガラス面が屈折率の 不連続面となるため問題点となって現れる.

本研究は屈折率の変化に対応した3次元計測手法を 構築することを目的としているが,同様の研究として はこれまでにも海中を対象としたセンシングに関する 研究が報告されている[1] - [6] .また容器中の物体を外 部から観測する場合についての報告もなされている [7] - [10] . 屈折の現象を定量的に解析するには,屈折 率の不連続面に光が入射する角度を知ることが必要で あり,このことは特に容器を外部から観測する場合に は重要な項目となる.そして水と空気の境界として得 られる屈折率の不連続面は必ずしも平面とは限らず,

図1.屈折による画像の歪み

例えば[9]では円筒形状の容器を扱っているが,この場 合も容器形状が円筒という既知の形状であることとい う制限があり,その他に計測対象を入れた容器を回転 台に載せて回転させるなどの汎用性に欠けるという問 題点もある.

そこで本論文では,水槽容器形状が未知である場合 にも適用可能な水中物体の形状計測手法として,レー ザレンジファインダ(以下 LRF と略す)を搭載したマ ニピュレータを容器の周りで移動させて画像を取得す ることにより,容器形状と物体形状を同時に取得する 方式について提案する.本方式では,ガラスなどで構 成されている水槽容器は完全な透明体ではなく,容器 表面である程度のレーザ反射光が得られることを利用 する.これにより従来の三角測量で容器表面の形状が 取得でき,然る後に容器表面の法線方向を用いて光線 追跡[4]により水中物体上のレーザ照射点の3次元座標 を得て物体の形状を獲得する.

以下,計測原理,及び実験結果について述べる.

2 計測原理

2.1 概要

屈折を考慮して容器中の物体を計測するにあたり, 容器にレーザ光が入射する際,および計測点から逆に 反射光がカメラに向かって進む際には次の2つの情報 が必要となる.

- a. 光線と容器表面との交点の3次元位置
- b. 上記交点における容器表面の法線方向

そこで,本方式ではマニピュレータを動かして取得 した観測画像群から,第1段階として容器表面上で反 射したレーザ光の点を抽出して,その点の3次元座標 を算出することにより,容器の表面形状を決定する. して次は得られた容器の形状データを用いて水中物体 の計測を行う.なお透明な容器の表面ではLRFの角度 によっては反射光が微弱となって検出が困難な場合も 想定されるが,マニピュレータを制御することにより, 容器表面に対して LRF を最適な角度に設定して対処 することができる.本方式の処理手順を図2に示す.

図2.計測処理手順

2.2 計測位置の移動と画像取得

LRFを搭載したマニピュレータにパソコンから移動 命令を出して,容器の周りを周回して水中物体上にレ ーザ光を照射し,計測画像を取得する.このとき1つ の計測において,レーザを照射した場合の画像と照射 しない場合の画像の両方を取得する.また各画像とと もに,その画像におけるマニピュレータの位置・姿勢 データを蓄積する.

2.3 レーザ反射点の抽出

下記の手順に従って各取得画像からレーザ反射点を 抽出する.レーザ光は容器表面,裏面,水中物体表面 で反射する他,場合によっては容器壁面や物体表面で 多重反射をすることがある.ここではこれらの全ての 反射光を抽出する.

- 1) 差分画像の作成
 各計測位置において、レーザを照射した場合の
 画像と照射しない場合の画像の差分をとり、差
 分画像を作成する.
- 2) 歪曲収差の補正 差分画像に含まれているレンズの歪曲収差を補 正した画像を作成する.
- 3) 差分画像の2値化 収差補正された差分画像を2値化して,2値化 画像を作成する.
- 4) ノイズ除去
 2 値化した差分画像中で孤立点などのノイズを 除去する.
- 5) 領域分割

2 値化画像にラベリング処理を施し,連結領域 ごとに分割する.この結果得られた各領域が, 容器表面や物体表面上の点の他,多重反射を含 めたレーザ反射点を表す領域となる.

2.4 容器形状の計測

領域分割により得られたレーザ反射点の各領域から 水槽容器表面の点を検出して,三角測量によりその点 の3次元座標を算出する.

2.4.1 容器表面の計測点の検出

領域分割によって得られた多数のレーザ反射点領 域から容器表面の計測点に対応する領域を検出する には、レーザとカメラのキャリブレーション結果から 得られるエピポーラ拘束を利用する.レーザ光源から 容器表面までは空気中の光伝搬であるので、容器表面 上のレーザ照射点はカメラで撮影した画像中のエピ ポーラライン上に位置が拘束される.そこでこのエピ ポーラライン上に存在する領域を容器表面上のレー ザ照射点とみなす.なおエピポーラライン上に一致す るレーザ反射点領域は、容器表面における照射点の他、 容器の裏面や場合によっては物体上の照射点や多重 照射点など複数存在することもある.その場合はエピ ポーラライン上で最もレーザ光源の位置に近い照射 点領域を容器表面の計測点として採用する.

2.4.2 容器表面の計測点の3次元計測

図 3 に示す座標系がカメラ座標系である.カメラの レンズ中心 C₀ を原点とし,紙面を裏に貫く方向を Y 軸にとり,カメラの光軸方向を Z 軸の正の方向と定義 する右手系である.レーザの原点 (L_x, L_y, L_z) とレーザ の方向ベクトル $\bar{d}_{l_1} = (a_{l_1}, \beta_{l_1}, \gamma_{l_1})^{\mathrm{T}}$ はキャリブレーション により求めておく.

計測点の判別により容器の計測点 *P*₁ を画像上から 抽出し3次元計測を行う.容器は完全な透明体ではな いため容器表面でのレーザ反射光を計測点として抽出 可能である.図3より*P*₁は,カメラ光線ベクトルとレ ーザの光線ベクトルの交点として求められる.以下, LRFによる計測法についてカメラ,レーザの光線追跡

カメラの光線追跡

計測点の画像上の座標I(u,v)からカメラ光線ベクト ル $\vec{d}_{c1} = (\alpha_{c1}, \beta_{c1}, \gamma_{c1})^{T}$ を求める.まず点I(u,v)を画像座 標からカメラ座標に変換する.カメラのレンズ中心と 画像面との距離をfとすると,レンズ中心を原点とした カメラ座標系にて記述する画像面上の点の座標(x, y, f)は以下の式で求められる.なお式中の係数はアフィン 変換のパラメータで,予めカメラキャリプレーション により求めておく.

$$\begin{pmatrix} x \\ y \\ f \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & f \end{pmatrix} \begin{pmatrix} u \\ v \\ 1 \end{pmatrix}$$
(1)

カメラの方向ベクトル*d*_{c1}の各成文は式(1)を正規化し以下のように与えられる.

$$\begin{pmatrix} \alpha_{c1} \\ \beta_{c1} \\ \gamma_{c1} \end{pmatrix} = \frac{1}{\sqrt{x^2 + y^2 + f^2}} \begin{pmatrix} x \\ y \\ f \end{pmatrix}$$
(2)

またカメラ光線上の点 $P_c(x_{pc}, y_{pc}, z_{pc})$ は以下の式で表される.ここで ρ_{c1} は定数である.

$$\begin{pmatrix} x_{pc} \\ y_{pc} \\ z_{pc} \end{pmatrix} = \rho_{cl} \begin{pmatrix} \alpha_{c1} \\ \beta_{c1} \\ \gamma_{c1} \end{pmatrix}$$
(3)

レーザ光の光線追跡

レーザ光線上の点 $P_{l}(x_{pl}, y_{pl}, z_{pl})$ は式(3)と同様に次式 で表される.ここで ρ_{l1} は定数である.

$$\begin{pmatrix} x_{pl} \\ y_{pl} \\ z_{pl} \end{pmatrix} = \begin{pmatrix} L_x \\ L_y \\ L_z \end{pmatrix} + \rho_{ll} \begin{pmatrix} \alpha_{l1} \\ \beta_{l1} \\ \gamma_{l1} \end{pmatrix}$$
(4)

レーザで照射された容器表面の計測点 P1は,原理的

には式(3)と式(4)が等しいとおいて_{ρc1}と_{ρ1}を決定する ことにより,求めることができる.しかし実際にはキ ャリプレーションや画像ノイズ等によって生じた誤差 などの影響により2光線が交わらない場合が多い.そ こで,カメラ,レーザの光線が空間上において最も近 づく場所におけるそれぞれの光線上の2点の中点を計 測点と見なすこととする.

容器表面形状の推定

上記で得られた容器表面の計測点の3次元座標はカ メラ座標系において記述されている.一方,外部から 与えるマニピュレータ移動命令はマニピュレータ座標 系で記述されている.そこでマニピュレータの各位 置・姿勢において観測された容器表面上の計測点を, マニピュレータ座標系を介してカメラ座標系から世界 座標系に変換する.これにより,容器表面形状が世界 座標系で記述されることになる.得られた形状は一般 的には下記のような式で与えられる。

$$h_1(x, y, z) = 0$$
 (5)

なお水槽容器の裏面(水に接している面)についても LRFで得られた画像中から裏面で反射しているレーザ 光を抽出することにより原理的には可能であるが,容 器の厚みをほぼ一定として扱って式(5)から近似する ことも可能と考えられる.

$$h_2(x, y, z) = 0$$
 (6)

2.5 水中物体の計測

マニピュレータの各位置・姿勢ごとに得られた観測 画像から水中物体上のレーザ照射点の3次元座標を得 ることにより,水中物体の3次元形状計測を行う.水 中物体上のレーザ照射点の3次元計測は次のような光 線追跡により行う.

<u>カメラの光線追跡</u>

水中物体の計測点の画像座標 I(u, v)から式(1)を用いてカメラ光線ベクトル $\vec{d}_{c1} = (\alpha_{c1}, \beta_{c1}, \gamma_{c1})^{T}$ を求める.カメラ原点 $C_0(0,0,0)$ から出発したカメラ光線ベクトル \vec{d}_{c1} と容器表面との交点を $C_1(C_{1x}, C_{1y}, C_{1z})$ とすると,式(3)と同様に次式が得られる.

$$\begin{pmatrix} C_{1x} \\ C_{1y} \\ C_{1z} \end{pmatrix} = \rho_{c1} \begin{pmatrix} \alpha_{c1} \\ \beta_{c1} \\ \gamma_{c1} \end{pmatrix}$$
(7)

また $C_1(C_{1x}, C_{1y}, C_{1z})$ は容器表面上の点であるので, 次式を満たす.

$$h_1(C_{1x}, C_{1y}, C_{1z}) = 0 \tag{8}$$

式(7),(8)より ρ_{c1} が求まるので,それを式(7)に代入することにより,容器表面上の観測点 $C_1(C_{1x}, C_{1y}, C_{1z})$ が求まる.そして,この点 C_1 が入射点となりカメラ光線

図4.屈折率が変化する場合の光線追跡

*d*_{c1}が屈折を起こす.

次に屈折後のカメラ光線ベクトル $\vec{d}_{c2} = (a_{c2}, \beta_{c2}, \gamma_{c2})^{T}$ を求める.屈折前の媒体である空気の屈折率 n_a , 屈折後の媒体であるガラスの屈折率を n_g とし,点 C_1 における容器表面の法線ベクトルを $\vec{N}_1 = (\lambda_1, \mu_1, \nu_1)^{T}$ とすると,屈折後のカメラ光線ベクトル \vec{d}_{c2} は以下の式で求められる[4].

$$\begin{pmatrix} \alpha_{c2} \\ \beta_{c2} \\ \gamma_{c2} \end{pmatrix} = \frac{n_a}{n_g} \begin{pmatrix} \alpha_{c1} \\ \beta_{c1} \\ \gamma_{c1} \end{pmatrix} - \left\{ \frac{n_a}{n_g} \cos\varphi_{c1} - \sqrt{1 - \left(\frac{n_a}{n_g}\right)^2 \sin^2\varphi_{c1}} \right\} \begin{pmatrix} \lambda_1 \\ \mu_1 \\ \nu_1 \end{pmatrix}$$
(9)

ここで, φ_{c1} は \vec{d}_{c1} が \vec{N}_1 となす角で屈折における入射角に相当し,

$$\cos \varphi_{c1} = \alpha_{c1} \lambda_1 + \beta_{c1} \mu_1 + \gamma_{c1} \nu_1$$
 (10)

である.

容器表面での屈折後,カメラ光線はガラス内を直進 し,内側の容器壁面点C₂(C_{2x},C_{2y},C₂)で再び屈折を起 こす.そこで次にこの屈折点C₂の3次元位置を求める.

点 C_2 は点 C_1 の座標と屈折後のカメラ光線ベクトル \vec{d}_{c2} を用いて次式で表される.

$$\begin{pmatrix} C_{2x} \\ C_{2y} \\ C_{2z} \end{pmatrix} = \begin{pmatrix} C_{1x} \\ C_{1y} \\ C_{1z} \end{pmatrix} + \rho_{c2} \begin{pmatrix} \alpha_{c2} \\ \beta_{c2} \\ \gamma_{c2} \end{pmatrix}$$
(11)

また点C2は次式も満たす.

$$h_2(C_{2x}, C_{2y}, C_{2z}) = 0 \tag{12}$$

式(11),(12)より ρ_{c1} が求まるので,それを式(10)に代入 することにより,容器裏面上の点 C_2 が求まる.そして, この点 C_2 においてもカメラ光線 \vec{d}_{c2} が屈折を起こす.

屈折後のカメラ光線ベクトル $d_{c3} = (\alpha_{c3}, \beta_{c3}, \gamma_{c3})^{T}$ を 求める.屈折前の媒体であるガラスの屈折率 n_{g} に対し て屈折後の媒体である水の屈折率 $e_{n_{w}}$ とし,容器面の 法線ベクトルを容器表面と同様に $\vec{N}_2 = (\lambda_2, \mu_2, \nu_2)^{T}$ と すると,屈折後のカメラ光線ベクトル \vec{d}_{c3} は式(9)と同 様に次式で求められる.

$$\begin{pmatrix} \alpha_{c3} \\ \beta_{c3} \\ \gamma_{c3} \end{pmatrix} = \frac{n_g}{n_w} \begin{pmatrix} \alpha_{c2} \\ \beta_{c2} \\ \gamma_{c2} \end{pmatrix} - \left\{ \frac{n_g}{n_w} \cos\varphi_2 - \sqrt{1 - \left(\frac{n_g}{n_w}\right)^2 \sin^2\varphi_2} \right\} \begin{pmatrix} \lambda_2 \\ \mu_2 \\ \nu_2 \end{pmatrix} (13)$$

ここで, φ_{c2} は \vec{d}_{c2} が \vec{N}_2 となす角で,

$$\cos\varphi_{c2} = \alpha_{c2}\lambda_2 + \beta_{c2}\mu_2 + \gamma_{c2}\nu_2 \qquad (14)$$

である.

以上のようにして,求められたd_{c3}が水中物体の計 測点に到達する.以上より水中物体の計測点を目指す 容器内のカメラ光線の式は式(15)で与えられる.

$$\begin{pmatrix} x_{pc} \\ y_{pc} \\ z_{pc} \end{pmatrix} = \begin{pmatrix} C_{2x} \\ C_{2y} \\ C_{2z} \end{pmatrix} + \rho_{c3} \begin{pmatrix} \alpha_{c3} \\ \beta_{c3} \\ \gamma_{c3} \end{pmatrix}$$
(15)

 $P_c(x_{pc}, y_{pc}, z_{pc})$ がカメラの光線追跡の結果求められる 水中物体の計測点 P_c の位置である.この値は定数 ρ_{c3} に よって決まる.

レーザ光の光線追跡

カメラの光線追跡と同様にして,レーザ光線の追跡 も実現できる.最終的にレーザ光線が水中物体の表面 まで到達する点を $P_l(x_{pl}, y_{pl}, z_{pl})$ とすると,次式で表現 できる.

$$\begin{pmatrix} x_{pl} \\ y_{pl} \\ z_{pl} \end{pmatrix} = \begin{pmatrix} L_{2x} \\ L_{2y} \\ L_{2z} \end{pmatrix} + \rho_{l3} \begin{pmatrix} \alpha_{l3} \\ \beta_{l3} \\ \gamma_{l3} \end{pmatrix}$$
(16)

水中物体の計測点の3次元座標算出

レーザで照射された水中物体の計測点は,容器表面 上の点を求めるときと同様に,2 光線が交わらない場 合が多い(すなわち式(15)と(16)を等しくするような係 数が存在しない).そこで,カメラ,レーザの光線が空 間上において最も近づく場所におけるそれぞれの光線 上の2点の中点を計測点と見なすこととする.なお, レーザ反射点が複数存在する場合には,認識された点 について両光線の最短距離について閾値処理を施し, 計測点の判別に利用する.

水中物体形状の推定

物体計測により得られる3次元座標値はカメラ座標 系における座標値である.そこで容器表面形状の推定 と同様に,マニピュレータの各位置・姿勢において観 測された容器表面上の計測点を,マニピュレータ座標 系を介してカメラ座標系から世界座標系に変換する. これにより,物体形状が世界座標系で記述されること になる. 3. 実験

3.1 LRF のキャリブレーション

物体計測を行う前にカメラパラメータ,レーザの原 点とその方向ベクトル,そして世界座標系とカメラ座 標系・マニピュレータ座標系の関係を求めた.

キャリブレーションには市販の画像処理ソフトを用 いてカメラパラメータを求めた.また,このソフトで 定義されている世界座標系を計測における世界座標系 として利用した.これによりまず初期位置でのカメラ 座標系と世界座標系の関係を求め,次にカメラをマニ ピュレータ座標系で記述される量だけ移動した.そし て初期位置で観測した評定点が新たなカメラ座標系で どのような値となるかを調べることにより,世界座標 系とカメラ座標系,マニピュレータ座標系の関係を求 めた.

最後に,レーザ光線の原点 L_0 とレーザの方向ベクト ル d_1 を求めた.ここではレーザを格子パターンに照射 した画像を複数枚の画像を取得し,それぞれの画像に おけるレーザ光の位置関係を基にしてキャリプレーシ ョンを行った.

3.2 計測実験

今回の実験では簡単のために,図5に示すような角型のガラス製水槽中の物体計測を行った.屈折率はそれぞれ,水の屈折率 n_w =1.33,空気の屈折率 n_a =1.0,ガラスの屈折率 n_g =1.5 とおいた.また容器のガラスの厚さは予め計測しておき2.1mmであった.取得画像の解像度は640×482pixelである.

マニピュレータはほぼ水槽前面に沿って水平方向に 5cm 平行移動させる走査を5回,異なる高さについて 実行した.5回のうち3回は水中の物体上にレーザ照 射点がくるようにLRFの高さを設定し,また2回は物 体が水面の上に出ている部分を走査するようにLRF の高さを設定した.

まず最初に各走査で得られた水槽表面上のレーザ照 射点を検出して,それぞれの3次元座標をワールド座 標系にて算出した.得られた座標は水槽表面の表す平 面の式に乗るはずであるが,実際はそれぞれの座標が 計測誤差のためにばらついているので,平面の方程式 を最小2乗法にて求めた.得られた平面の方程式から 容器表面の単位法線ベクトル N₁を算出した.

次に,各画像の水中物体上のレーザ照射点を検出し て光線追跡を行い,物体上の計測点の3次元座標を獲 得した.ここで水槽壁面は平面であるために法線ベク トルは定数で,また $\vec{N}_1 = \vec{N}_2$ である.実験の結果得ら れた計測点の鳥瞰図を図6に示す.

図5.計測実験の概観

手前にある5本の直線が水槽表面の上にある点であ り,水槽の奥に位置する5本のL字型の線分対が計測 物体上の点である.世界座標系が水槽に対して若干傾 いて設定してあったために,水槽表面が傾斜して表さ れている.図7は計測結果を水槽底面に沿った平面図 として表したものであり,水槽表面および計測対象物 体表面のデータが正しく重なっていることがわかる. なお計測対象物体の表面を表すそれぞれの直線で2枚 の平面を構成し,2平面がなす角度を算出したところ 約92度の値が得られ,角柱が正しく計測できたことを 確認した.

図6.計測結果(鳥瞰図)

図7.計測結果(水槽底面に沿った平面図)

4 結論

本論文では,LRFを用いた透明容器内の水中物体形 状計測の手法を提案した.本方式では,LRFを搭載し たマニピュレータを移動させて画像を取得する際に, 水中物体上の計測点のみならず水槽容器表面のレーザ 反射光が抽出できることを利用する.処理手順として は,まずLRFのキャリブレーションによって得られる エピポーラ拘束を用いて容器表面でのレーザ反射光を 抽出し,通常の三角測量にて表面上の点の3次元座標 を取得する.そしてマニピュレータの移動により得ら れる多数の容器表面上の計測点座標から容器の形状を 推定し,これを利用して屈折を考慮した光線追跡を行 って水中物体の3次元座標を算出する.

予備実験として角型のガラス水槽を用いた計測を行 い良好な結果を得たが,今後はさらに様々な容器形状 と物体形状に対して本方式の有効性を確認することが 主要な課題となる.

謝 辞

本論文の一部は、財団法人中部電力基礎技術研究所, 及び日本学術振興会科学研究費基盤研究(C)14550416 の補助を受けた.

参考文献

[1]Robert F.Tusting and Daniel L.Davis:"Laser Systems and Structured Illumination for Quantitative Undersea Imaging,"Marine Techno-

logy Society Journal, Vol.26, No.4, pp.5-12, 1992.

[2]重松 文治, 守屋 典昭:"水中レーザ・GPS を用いた 大水深測深システムの研究開発,"写真測量とリモー トセンシング, Vol.36, No.5, pp.24-34, 1997.

- [3]小川洋司:"水中物体の形状計測,"第 36 回計測自動 制御学会学術講演会講演論文集, pp.629-630, 1997.
- [4]Rongxing Li, Haihao Li, Weihong Zou, Robert
 G.Smith and Terry A.Curran:"Quantitive
 Photogrammetric Analysis of Digital Underwater Video
 Imagery," IEEE Journal of Oceanic Engineering }, Vol.22, No.2, pp.364-375, 1997.
- [5]J.Yuh and M.West:"Underwater Robotics," Advanced Robotics, Vol.15, No.5, pp.609--639, 2001.
- [6]柳 善鉄, 浦 環, 藤井 輝夫, 近藤 逸人:"人工水中 ランドマークと推測航法を利用した自律型水中ロボ ットの航法,"日本ロボット学会誌, Vol.20, No.3, pp.290-298, 2002.
- [7]河村 拓史,斎藤 英雄,中島 真人:"時空間画像解析 による水中物体の3次元形状計測",計測自動制御学 会論文集, Vol.32, No.4, 1996.
- [8]中山 大介,中野 敦史,金子 透,三浦 憲二郎,久 保 高啓:"ステレオ視によるガラス水槽中物体の3次 元計測のための観測パラメータ取得,"電子情報通信 学会論文誌 D-II, Vol.J84-D-II, No.12, pp.2684--2689, 2001.
- [9]山下 淳,林本 悦一,金子 透,川田 善正:"円 筒状透明容器中における水中物体のレーザ光による 3次元形状計測",第9回画像センシングシンポジウ ム講演論文集,pp.63-68,2003.
- [10]山下 淳, 樋口 裕和, 金子 透, 川田 善正: "光切断 法による水中物体の3次元計測", 第21回日本ロボ ット学会学術講演会予稿集, 2K21, pp.1-4, 東京, 2003.