## レーザ・超音波センサ搭載移動ロボットによる 透明物体を含む環境における2次元グリッド地図生成

岩科 進也† 山下 淳†‡ 金子 透†

 ・ 静岡大学工学部機械工学科 〒432-8561 静岡県浜松市中区城北 3-5-1

 カリフォルニア工科大学 1200 E. California Blvd. MC 104-44, Pasadena, CA 91125 USA

## E-mail: {f0730017,tayamas,tmtkane}@ipc.shizuoka.ac.jp

**あらまし**本研究では、レーザレンジファインダ(LRF)と超音波ソナーを搭載したロボットを用い、透明物体を含む環境における地図生成手法の提案を目的とする.従来のレーザ単体を用いた計測では透明物体は計測できず、また、超音波単体を用いた計測では計測精度が低いため、十分な信頼性を持つ地図が生成しにくい.そこで、本研究では計測精度の高いレーザ計測データを用いて、不透明物体の計測と移動ロボットの自己位置推定を行い、超音波によって透明物体の計測を行うことで、計測精度が高く、かつ、透明物体の存在を反映した地図生成手法を実現する.

キーワード レーザレンジファインダ,超音波ソナー,地図生成

## 1. 序論

近年,ロボット技術の発展に伴い,警備ロボットや看 護ロボットなどの自律移動ロボットの導入が期待されて いる.一般に,ロボットが自ら考えて行動するためには, 周囲環境の地図が必要となる.しかし,環境の地図は必 ずしも存在するとは限らない.そこで本研究では,移動 ロボットによる地図生成を目的とする.

周囲環境の地図を生成する方法として、計測精度の高 いレーザレンジファインダ(LRF)と計測情報量の多い カメラを同時に使用する手法[1]がある.この手法では, 計測精度の高い LRF 計測データに基づいてロボットの 自己位置を推定し、カメラにより周囲環境の3次元情報 を取得する.しかし、LRFやカメラは光学センサである ため、光が透過するガラスなどの透明物体が環境に含ま れる場合,正しく環境地図を取得できない場合がある. この問題の解決策には、触覚センサを用いた地図生成手 法[2]がある.しかし、触覚センサによる直接接触計測で は、環境中を隈無く走行する必要があるので、計測に多 大な時間を要する.非接触によって,透明物体を含む環 境における地図生成をする手法として、超音波ソナーを 用いた地図生成手法[3]がある. 超音波ソナーには、光学 センサではないため透明物体を計測できるという利点が ある.一方で、一般的に超音波は指向性が低いため角度 分解能が低く,壁面のような平面では鏡面反射を起こす ため計測精度が著しく低下するという問題点がある. こ の問題を解決する方法として、LRF と超音波ソナーを同 時に運用することが重要となる[4][5].

本研究では、計測精度の高いLRF と透明物体を計測で きる超音波ソナーを同時運用することで、透明物体を含 む環境での高精度な地図生成手法を提案する.

## 2. 原理

本研究では、測距センサである LRF と超音波ソナーを 移動ロボットに搭載し環境中を走行させ、複数の位置か ら計測したデータをロボットの自己位置推定データに基 づいて位置合わせし、これを統合して2次元地図を生成 する.また、地図はレーザ計測データと超音波計測デー タそれぞれで作成し、生成した地図を標本化しグリッド 地図として、計測された回数が少なくノイズである可能 性の高い計測点の除去処理をする.最後に、レーザ生成 地図と超音波生成地図を重ね合わせる.基本はレーザ計 測データを優先し、レーザにより障害物が存在しないと 判定された領域において超音波計測データを使用するこ とで、透明物体の計測データを地図に反映し、透明物体 が計測可能で精度の高い地図生成を行う.

## 3. 複数位置の計測データの統合

計測データの統合には、計測時のロボットの自己位置 情報が重要となる.ロボットの自己位置推定法として、 車輪の回転数から走行距離や回転角度を推定するデッド レコニングがよく使用されるが、これのみでは車輪のス リップなどで誤差が蓄積し正しい自己位置推定はできな い.よって本研究では、ロボットの自己位置推に各位置 の計測データの重なった部分を用いて位置合わせを行う ICP (Iterative Closest Point)アルゴリズム[6]を使用する.

本研究では、デッドレコニングの自己位置推定結果を, ICP アルゴリズムによる収束計算の開始位置として、収 束計算を行う. ICP アルゴリズムの収束結果を自己位置 推定結果として用い、LRF 計測データと超音波ソナー計 測データを位置合わせし、複数位置で計測したデータを 統合する.

## 4. レーザ地図生成

## 4.1. レーザ生成地図の標本化

透明物体を含む環境において LRF による計測を行う と、透明物体をレーザが通過する際の屈折や表面の汚れ の影響により、透明物体の後方にノイズが計測される場 合があるため、これを除去する必要がある.ノイズ除去 の前処理として、生成地図の標本化を行う.

まず,正方形のグリッドに区切ったグリッド地図を作 成する.そして,LRF計測データに基づき各グリットに 対してラベル付けし領域判定をする.ラベルは障害物が 存在する"障害物領域",障害物の存在しない"空き領域", 1度も計測が行われていない"不明領域"の3種類を用意 する.初期ラベルとしてすべてのグリッドに不明領域と ラベル付けし,以後の処理で空き領域と障害物領域に更 新していく.

移動ロボット搭載のLRFからレーザが発振された状況 を図1の標本化モデルで表す.LRFが距離rという計測デ ータを取得したとする.しかし,距離rには誤差が含まれ ている可能性があるため、LRFの計測精度に基づいて誤 差幅 ±  $\Delta r_L c$ 設定し、同様に、角度方向の誤差幅として 角度方向分解能 $a_L c$ 設定する.本研究で使用するLRFは 角度方向を等分割にして計測するが、このときの分割数 が角度方向分解能を規定する. $r+\Delta r_L c r-\Delta r_L$ ,角度方向 分解能 $a_L$ に囲まれた領域を障害物領域とし、LRFの原点 と $r-\Delta r_L$ ,角度方向分解能に囲まれた領域を空き領域とす る.このモデルによりグリッド地図を更新する.

グリッド中心が障害物領域内に入ったグリッドには, 障害物領域とラベル付けするとともにグリッドに1ポイ ント加算する.1 度障害物領域とラベル付けを行うと, それ以降空き領域のラベルには更新されない.また,グ リッド中心が空き領域に入ったグリッドに対しては,空 き領域とラベル付けし,ポイントは加算しない.空き領 域のラベルは他の位置における計測によって障害物領域 となった場合,障害物領域に更新される.

すべての計測データの標本化が終了した時点で、障害 物領域とラベル付けされたグリッドに加算されたポイン ト数を調べる.ポイントが少ないグリッドは、グリッド 内に障害物が計測された回数が少なく信頼性が低いため、 ノイズである可能性がある.そこで、ポイントが設定し た閾値P<sub>L</sub>以下の障害物領域を"ノイズ可能性領域"として 抽出する.



図1 レーザ標本化モデル

## 4.2. レーザ生成地図のノイズ除去処理

前節で抽出したノイズ可能性領域に対して,ノイズ除 去処理を行う.ノイズ可能性領域にはノイズと共に,障 害物を正確に計測したとしても,計測回数が不十分だっ たためポイントが閾値以下となり抽出された,本来は障 害物領域であるはずの領域も含まれる.また,不明領域 と空き領域の境界にはレーザを反射した障害物が必ず存 在するはずである.そこで,不明領域と空き領域の境界 領域にあたるノイズ可能性領域は,障害物領域と再度判 定する.残りのノイズ可能性領域は,ノイズと判定して 空き領域に変更する.

## 5. 超音波地図生成

超音波ソナーから超音波が発振された状況をLRFと同様に図2の標本化モデルで表し、誤差幅± $\Delta r_s$ 、角度方向分解能 $\alpha_s$ を設定、 $r+\Delta r_s$ と $r-\Delta r_s$ 、角度方向分解能 $\alpha_s$ に囲まれた領域を障害物領域とし、このモデルによりグリッド地図にポイントを加算していく.

しかし,各計測点の標本化の段階では,超音波ではラ ベル付けはせず,領域判定は行わない.これは,超音波 ソナーによる計測は,角度方向分解能が低く,平面では 鏡面反射を起こして計測精度が著しく低下するという問 題があり,LRFによる計測より精度が低いためである. そのため,1度障害物領域と判定されても他の計測デー タでは空き領域と判定される,という事態がたびたび生 じ、領域判定を行っても信頼性が低い.そこで、グリッドに対するポイント加算により、すべての計測データを 総合し、領域判定の信頼性を高める.



#### 図2 超音波標本化モデル

レーザ光の飛行時間を用いて計測を行うため、基本的 に角度分解能が高く計測距離に関係なく高精度な計測が できる LRF と異なり、超音波計測では、図2より距離 r が大きくなるほど低い角度分解能の影響で障害物領域が 広くなり、また、鏡面反射の影響で発生する誤計測点は 距離 r が本来より大きく計測される等、計測距離が長く なるほど精度が低下する傾向にある.そこで、障害物領 域内に入ったグリッドに対し、距離 r が大きいほど信頼 性が低いとして、便宜的に距離 r の2 乗に反比例した値 のポイント(G)を式(1)により加算する.

$$G = \frac{1}{r^2} \tag{1}$$

すべての計測データの標本化が終了した時点で,ポイントの合計値が高いグリッドほど障害物計測の信頼性が 高いとする.これにより,ノイズの可能性が高い孤立点 や鏡面反射によって本来より距離rが大きく計測されて しまった点は,障害物計測の信頼性が低い点として標本 化される.その後,閾値Psを設定し,グリッドに加算さ れたポイントが閾値Ps以上の領域を障害物領域と判定す る.

#### 6. 生成地図の重ね合わせ

生成されたレーザ標本化地図と超音波標本化地図の重 ね合わせを行う.不透明物体は計測精度の高いレーザに よる計測データを採用するのが望ましく,透明物体は超 音波の計測データを採用するのが望ましい.そこで,レ ーザ標本化地図における,空き領域では超音波標本化地 図のデータを用い,その他の領域についてはレーザ標本 化地図のデータを用いる.これにより,不透明物体はLRF により計測され,LRFによって障害物が存在しないと判 定された領域にある透明物体は超音波ソナーによって計 測される.

#### 7. 実環境における検証

#### 7.1. 実験1

#### 7.1.1 実験環境1

実験はL字型の廊下に透明な壁(アクリル板)を設置 した環境で行った. 概略図を図3に示す. この廊下をLRF と超音波ソナーを搭載した移動ロボットを,物陰に隠れ て計測できない領域を減らすため,往復走行させ,環境 の計測を行った.



図3 実験環境

## 7.1.2. 実験結果1

ICP アルゴリズムによるロボットの自己位置推定結果 に基づいた位置合わせによる,複数位置からの計測デー タの統合結果を図4に示す.図4(a)において,アクリル 板後方の位置にレーザによってノイズが計測されている のがわかる.また図4(b)において,本来障害物が存在し ない位置に,超音波により離散的にノイズが計測されて いる.

今回の実験ではLRFによる計測を7.5sサイクルで合計 26 回行い, ICP アルゴリズムによる自己位置推定は 25 回行った.使用 CPU: Pentium4-2.8GHz において, ICP アルゴリズム収束計算の所要時間は平均1.045sであった. また,最長所要時間は1.906sであった.これは,LRFに よる計測を行う毎に自己位置推定と地図生成を行う場合, リアルタイムでロボットの自己位置推定と地図生成を同 時に行う SLAM (Simultaneous Localization and Mapping) [7]の実現が可能な計算速度であると考えられる.



# (a)レーザ (b)超音波 (b)超音波 (b)超音波

ICPアルゴリズムによる自己位置推定結果に基づいた レーザ・超音波生成地図に,標本化処理を行った結果を 図 5 に示す.標本化地図のグリッドサイズは 5cm四方と した.LRFの誤差幅は $\Delta r_L$ =5cm,角度方向分解能 $\alpha_L$ =0.5° と設定し,超音波の誤差幅 $\Delta r_S$ は,鏡面反射による計測誤 差がない限りレーザと同程度の測距精度が期待できるの で、レーザとの重ね合わせを考慮して、レーザと同じ値 に設定した.また,超音波の角度方向分解能 $\alpha_S$ =20°とし た.図 5(a)において、アクリル板後方にレーザ計測ノイ ズ領域が生じているのがわかる.さらに、図 5(b)におい て,離散的に計測されていた超音波ノイズが加算ポイン トの低い点として標本化されている.

レーザ標本化地図に対してノイズ処理を行い,超音波 標本化地図に対して障害物領域の判定を行った結果を図 6に示す.

今回の実験では、1箇所につき概ね5回以上の計測が 行われている.そこで、レーザ標本化処理において加算 されたポイントが閾値P<sub>1</sub>=4 以下の障害物領域をノイズ 可能性領域として抽出し、ノイズ除去処理をした.また、式(1)により超音波標本化に際してポイントを加算し、加算されたポイント $P_s$ =0.0000045以上のグリッドを障害物領域と判定した.



レーザ標本化地図のノイズ処理によって透明物体後方 に検出されていたレーザノイズが除去されている. 超音 波標本化地図の障害物領域判定により,離散していた超 音波ノイズは,グリッドに加算されていたポイントが低 かったため障害物領域とは判定されず,ポイント数が十 分に高い領域のみ障害物領域と判定されている.



レーザ標本化地図と超音波標本化地図を重ね合わせた 結果を図7に示す.レーザでは計測できなかったアクリ ル板が超音波により計測されている.また,超音波では 正確に計測できなかった壁面形状がレーザにより正確に 計測されている.



図7 レーザ・超音波合成地図

また, 生成地図の精度を評価するため, 図 7 中の a, b, c, dの値を実測値と生成地図より算出した計測結果とで 比較し、結果を表1にまとめた.

|   | 実測値   | 計測結果  |
|---|-------|-------|
| а | 254cm | 250cm |
| b | 90deg | 90deg |
| с | 62cm  | 65cm  |
| d | 53cm  | 50cm  |

#### 表1 生成地図の評価

#### 7.2. 実験2

## 7.2.1. 実験環境 2

次に,より一般的な環境における地図生成実験を行っ た.実験環境を図8に示す.実験環境には、支柱が等間 隔に入ったガラスの壁が存在した.この環境において移 動ロボットを往復走行させ地図を生成した.



## 図8 実験環境

#### 7.2.2. 実験結果 2

生成されたレーザ・超音波統合地図を図9に示す.レ ーザでは計測できないガラスの壁が超音波により計測で き,支柱がレーザにより計測されている.不透明な壁面 の形状はレーザにより正確に計測できた. また, 生成地 図の精度を評価するため図9中のa, b, cの値を実測値 と生成地図より算出した計測結果とで比較し、結果を表 2にまとめた.



レーザ・超音波統合地図 図 9

#### 表2 生成地図の評価

|   | 実測値   | 計測結果  |
|---|-------|-------|
| а | 251cm | 255cm |
| b | 90deg | 90deg |
| с | 363cm | 360cm |

#### 7.3. 考察

不透明物体はレーザにより正確な地図生成に成功した. また、レーザでは計測できなかった透明物体は、LRF に よる正確な自己位置推定と、ポイント加算式の超音波地 図生成手法により,地図生成に成功した.生成地図の誤 差幅は 5cm 以内に収まり、ロボットが自律移動に使用す る地図としては十分な精度であると考えられる.

## 8. 結論

本研究ではレーザにより不透明物体の正確な計測と ICP アルゴリズムによる自己位置推定を行い, 超音波に より透明物体の計測を行うことで、レーザ・超音波のセ ンサフュージョンにより、透明物体を含む環境において の高精度な地図生成の手法を提案した.

今後の課題として、レーザ計測データに基づいた超音 波計測ノイズの除去や、ベイズ推定を用いた時系列統合 手法の導入による、より信頼性の高い地図生成手法の研 究が挙げられる.

## 参考文献

- [1] 根岸善朗,三浦純,白井良明:"全方位ステレオとレ ーザレンジファインダの統合による移動ロボット の地図生成"、日本ロボット学会誌、24、6、 pp.690-696(2003)
- [2] 倉爪亮,広瀬茂男,岩崎倫三,長田茂美: "協調ポジシ ョニングシステムの研究-CPSアクティブタッチ 融合型地図生成法-",日本ロボット学会誌,17,1, pp.84-90(1999)
- [3] A. Elfes : "Sonar-Based Real-World Mapping Navigation", IEEE Journal Robotics and Automation, RA-3, .3, pp.249-265(1987)
- [4] A. Diosi, and L. Kleeman : "Advanced Sonar and Laser Range Finder Fusion for Simultaneous Localization and Mapping", Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.1854-1859(2004)
- A. Abosshoaha and A. Zell : "Robust Mapping and [5] Path Planning for Indoor Robots based on Sensor Integration of Sonar and a 2D Laser Range Finder", Proceedings of the 2003 IEEE 7th International Conference on Intelligent Engineering Systems(2003)
- P.J. Besl and N.D. McKay : "A Method for [6] Registration of 3-D Shapes", IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 2, pp.239-256(1992)
- [7] J.J. Leonard and H.F. Durrant-Whyte : "Simultaneous Map Building and Localization for an Autonomous Mobile Robot", Proceedings of the 1991 IEEE/RSJ International Workshop on Intelligent Robots and Systems, pp.1442-1447(1991)