全方位ステレオカメラを用いた水中物体の3次元計測

纐纈 理志 山下 淳 金子 透

静岡大学工学部 〒432-8561 静岡県浜松市中区城北 3-5-1 E-mail: {f0930028,tayamas,tmtkane}@ipc.shizuoka.ac.jp

あらまし 自律型水中ロボットが活動するためには、ロボットが水中の周囲環境を計測する必要がある. その計測方法の1つとしてカメラ画像を用いた計測がある.しかし、従来のカメラを用いた水中物体の計測では、 通常の視野のカメラを用いているために、1回に撮影できる範囲が狭く広範囲を計測するには、多くの画像が必要となり、計測に時間がかかる.そこで本論文では、広範囲な視野を持つ全方位カメラを用いて、光の屈折を 考慮した水中物体のステレオ計測を行う.

キーワード 3次元計測,光の屈折,水中物体,全方位カメラ,ステレオ計測

1. 序論

近年,資源発掘やレスキュー等危険を伴う海底で の作業が増え,人間に代わって活動する自律型水中 ロボットの観測・作業システムの必要性が増してき た.これらのシステムは,目標地点まで正確に計測 してたどり着き,水中の状況を認識しながら作業を 遂行しなければならない.そのため,搭載したカメ ラから水中の様子を正確に観測するための技術が求 められるようになってきた.

しかし、水中においてカメラを用いた計測を行う 場合、光の屈折が問題となる.具体的には、空気、 水、カメラを覆う防水容器といった屈折率の異なる 物質間を光が通過するため、屈折の影響により撮影 画像に歪みが生じる.容器に入った物体が水のある 場合とない場合では形状が異なって見える.例を図 1 に示す.歪んだ画像を用いて形状計測を行うと正 確な形状が得られない.したがって水中においてカ メラを用いた計測を行うためには光の屈折の影響を 考慮する必要がある.

光の屈折を考慮した水中物体の3次元計測に関す る研究はすでに行われている.例えば、ステレオカ メラを用いた手法[1-3]やカメラとレーザを用いた 手法[4-6]などが提案されており、水中での3次元計 測を実現している.しかし、これらの手法では、通 常の視野のカメラを使っているために、1回に撮影 できる範囲が狭く広範囲を計測する場合には時間が かかる.そこで本研究では広範囲な視野を持つ全方 位カメラ(図2)を用いて水中物体の計測を行う. このカメラで撮影した画像を図3に示す.そして、 図3をパノラマ展開して水平角度を横軸にとった画 像が図4である.全方位カメラを使用することで、 常に周囲 360 度の対象を計測することが可能となる.

また,カメラとレーザを用いた手法では,高速に 移動する物体への対応が難しい.そこで,本研究で は2台の全方位カメラを用いたステレオ計測を行う ことで,動物体にも対応できる手法を構築する.

図1 光の屈折の影響

図2 全方位カメラ

図4 パノラマ画像

図3 全方位画像

2. 計測手法

本研究では2台の全方位カメラから画像を取得, 計測を行う.

取得した2枚の画像間で対応する位置を求める. その画像座標からそれぞれカメラ光線を求め,2本 のカメラ光線の交点を計測点の3次元座標として算 出する.カメラ光線は、あらかじめカメラキャリブ レーションを行うことで求めることができる.具体 的にはカメラのレンズ中心から結像面までの距離や 双曲面ミラーの形状等の内部パラメータ,2台のカ メラの位置関係,また屈折面の位置を求めることで ある.

また,光の屈折についてはスネルの法則を用いる ことで,その影響を考慮することができる.

2.1. 画像取得

本研究では、図5のように2台の全方位カメラを カメラの光軸方向に配置し、円筒状の防水容器で覆 う.それぞれのカメラで画像を取得し計測を行う. 図5の上側の全方位カメラを上カメラ、下側の全方 位カメラを下カメラとする.

2.2. 光線ベクトルの算出

カメラから3次元空間中の点に向かう光線を光線 ベクトルrとする.本研究で用いる全方位カメラは カメラ前方に双曲面ミラーを装着したものであり, この光線ベクトルrは,双曲面のミラー側の焦点か ら3次元空間中の点へ向かう光線が双曲面上で反射 する点へのベクトルで表せる(図6).

特徴点の画像座標(u,v)から式(1)により**r**を求める. ここで a, b は双曲面のパラメータであり, f はカメ ラのレンズ中心から結像面までの距離である.

$$\mathbf{r} = \begin{bmatrix} su\\ sv\\ sf - 2c \end{bmatrix}$$
(1)

$$s = \frac{a^2 \left(f \sqrt{a^2 + b^2} + b \sqrt{u^2 + v^2 + f^2} \right)}{a^2 f^2 - b^2 (u^2 + v^2)}$$
(2)

$$c = \sqrt{a^2 + b^2} \tag{3}$$

2.3. 光の屈折の考慮

図7のように、光が屈折率の違う媒質間を通過する際には、光の屈折が発生する.そこで、スネルの法則を用いて、光の屈折を考慮した計測を行う.屈折前の媒質の屈折率を n_1 、屈折後の媒質の屈折率を n_2 とし、入射角を θ_1 、屈折角を θ_2 とすると、スネルの法則は式(4)のようになる.

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{n_2}{n_1} \tag{4}$$

屈折前の光線ベクトルを**r**₁,屈折面の法線ベクト ルを**v**とすると,屈折後の光線ベクトル**r**₂は式(4)を 用いると式(5)のように表せる[1].

$$\mathbf{r}_{2} = \frac{n_{1}}{n_{2}}\mathbf{r}_{1} + \left(\sqrt{1 - \left(\frac{n_{1}}{n_{2}}\right)^{2}\sin^{2}\theta_{1}} - \frac{n_{1}}{n_{2}}\cos\theta_{1}\right)\mathbf{v}$$
(5)

式(5)を用いることで,空気,防水容器,水間での 光の屈折後のカメラ光線を求めることができる.

2.4. パノラマ展開

全方位画像の歪みを補正するために,全方位画像 を図4のようなパノラマ画像に変換する.

2.5. 対応点探索

2 章の最初で述べたように、ステレオ計測には 2 枚の画像の対応する点を求める必要がある.そこで、 本研究では正規化相互相関によるテンプレートマッ チングを用いて、対応点探索を行う.

テンプレートマッチングを行う際にはエピポーラ 拘束を用いる.エピポーラ拘束を用いることで,対 応点探索範囲を画像全体からエピポーラ線上に限定 することができる.

エピポーラ線を算出するために,まず上カメラ画 像の注目点をもとに,ミラーの焦点から計測点に向 かう光線ベクトルを求める.そして,その光線ベク トル上の点から下カメラのミラーの焦点に向かうベ クトルを考える.そのベクトルをもとに下画像の投 影点を算出する.以上の手順を光線ベクトル上の点 全てに行うことで下画像にエピポーラ線を求めるこ とができる(図 8).

パノラマ画像において上画像のテンプレートで下 画像のエピポーラ線を探索することで対応点を求め る(図 9).

図8エピポーラ線の算出

(b) 下カメラ画像図 9 テンプレートマッチング

2.6.3 次元座標算出

2 枚の画像の対応点に対し、それぞれ光の屈折を 考慮した上でカメラ光線を求める.原理的にはこの 2 本のカメラ光線の交点が計測点の3次元座標とな るが、実際にこれらの光線が交わることは少ない. そこで上下カメラ光線の距離が最短になる位置を求 め、その2点の中点を計測点とする.

3. 実験

3.1. 形状計測

図 10 のようなアクリル製の防水容器を用いて計 測装置を構築した.カメラ間距離は 370mm, 取得画 像のサイズは 1920×1080pixels であり, 計測対象ま での距離は約 900mm であった.

形状計測が行えることを確認するために,計測対 象として2枚の平板を水中に配置し,計測を行った (図 11).この時に上下のカメラから取得した画像 を図 12に示す.計測を行う前提条件として屈折率 (水,アクリル,空気)を既知とした.また,テン プレートマッチングの際のテンプレートサイズは 41×41pixels,正規化相互相関による相関値の閾値は 0.7とした.計測結果を図 13に示す.

図 13(a)は計測対象を計測装置側から見た結果で ある.図13(b)は平板を斜め上から見た結果であり, 2 つの平板が計測できていることができている.計 測できていることが分かる.2 つの平面に対して, 最小2乗平面からの標準偏差を求めた結果,平面1 は9.0mm,平面2は13.4mmであった.

図 10 計測装置

図 11 計測環境

(a) 上カメラ画像 (b)図 12 取得画像

(b) 下カメラ画像

(b) 斜め上から見た図図 13 計測結果

3.2. 精度評価

次に,精度評価を行うため,図14のような形状が 既知の物体を水中に配置した.取得した画像におい て,手動で対応点を与え,対応点間の距離を計測し た.精度評価の結果を表1に示す.表1より,各辺 の真値との誤差はそれぞれ9.4mm,12.6mm,17.4mm, 29.6mm であった.誤差の原因としては,カメラキ ャリブレーションが正しく行われていなかったこと が考えられる.

図 14 計測対象 ま 1 特度評価

	各点間の距離	真値
辺 1	140.6mm	150.0mm
辺 2	137.4mm	150.0mm
辺 3	192.6mm	210.0mm
辺 4	180.4mm	210.0mm

3.3. 動物体計測

次に、本手法が動物体にも対応し、周囲 360 度に おいて計測できることを確認するための実験を行っ た.

計測対象を直径 170mm の赤色の円(図 15)に変 更し,計測装置の周囲 360 度に動かした.周囲 360 度に動く計測対象を撮影し,取得した 62 組のステレ 才画像対を用いて計測を行った.各画像において色 抽出を行い,計測対象の重心を求め,その3次元座 標を求めた.結果を図 16 に示す.

図 16 より,計測装置の周囲 360 度を動いた計測対 象を計測できていることが分かる.

計測結果より,本手法は動物体に対して有効であ り,また計測装置の全方位の対象を計測できている ことが分かった.

図 15 計測対象

図16 動物体の計測結果

4. 結論

本研究では、全方位カメラを用いて光の屈折を考 慮に入れた水中物体の3次元計測手法を提案した. 実験結果より、本手法は周囲360度を計測でき、動 物体に対しても有効であることが証明できた.

今後の課題として計測精度の向上,動物体の形状 計測などが挙げられる.

謝辞

本研究の一部は、日本学術振興会科学研究費補助 金基盤研究(C) 19560422,および財団法人旭硝子財 団の援助を受けた。

文 献

- [1] Rongxing Li, Haihao Li, Weihong Zou, Robert G. Smith, and Terry A. Curran: "Quantitative Photogrammetric Analysis of Digital Underwater Video Imagery", IEEE Journal of Oceanic Engineering, Vol.22, No.2, pp.364-375, 1997.
- [2] Atsushi Yamashita, Susumu Kato, and Toru Kaneko: "Robust Sensing Against Bubble Noises in Aquatic Environments with a Stereo Vision System", Proceedings of the 2006 IEEE International Conference on Robotics and Automation, pp.928-933, 2006.
- [3] Atsushi Yamashita, Akira Fujii, and Toru Kaneko: "Three Dimensional Measurement Of Objects in Liquid and Estimation of Refractive Index of Liquid by Using Images of Water Surface with a Stereo Vision System", Proceedings of the 2008 IEEE Internal Conference on Robotics and Automation, pp.974-979, 2008.
- [4] 山下淳,林本悦一,金子透:"レーザレンジフ アインダを用いた水中物体の3次元形状計測", 日本機械学会論文集 C 編, Vol.72, No.717, pp.1506-1513, 2006.
- [5] 山下淳,樋口裕和,金子透:"光切断法による水中物体の3次元計測",精密工学会誌,Vol.73,No.2, pp.265-269,2007.
- [6] 近藤逸人, 巻俊宏, 浦環, 能勢義昭, 坂巻隆, 稲石正明:"自律型水中ロボットによる構造物 観測システム~光切断法を用いた測距システ ムによる相対航法~", ロボティクス・メカト ロニクス講演会講演概要集, 2A1-L2-28, pp.1-4, 2004.