スケール復元が可能な水中 Structure from Motion

○柴田彬 (東京大学) 藤井浩光 (東京大学) 山下淳 (東京大学) 淺間一 (東京大学)

1. 序論

遠隔地や人の入れない水中環境では、ロボットによ る状況調査が多く行われている.その際、調査対象の 位置関係などを詳細を把握するために、3次元情報も 取得する必要がある.したがって、ロボットに適した 水中3次元測定手法は重要である.

カメラを用いて3次元測定を行う方法の1つに,ア クティブステレオ法がある.これはスリット光が測定 物体に照射される様子をカメラで観測する方法である. Yamashita ら [1] は,水中の測定物体に対してもアク ティブステレオ法が適用可能であることを示している. しかし,装置が大掛かりになるため,ロボットによる 環境調査には適していない.一方,河村ら [2] は水面上 でカメラを平行移動させながら水中物体を観測するこ とで,3次元測定を行う方法を提案している.この方 法は,カメラ1台のみで,かつ水面で発生する屈折現 象も考慮した上での3次元測定を実現してる.しかし ながら,カメラの姿勢を固定することと,カメラの移 動方向が既知であることが要求される.これにより測 定の際のカメラの自由度は減少するため,未知環境下 を調査するロボットに適用することは困難である.

一方,Structure from Motion (SfM) は,カメラ1 台のみで移動をしながらの測定が可能である.かつ,そ の移動によって生じたカメラの姿勢と移動の変化も算 出できるため,ロボットを用いての測定において効率 が良いと考えられる.しかし,従来のSfMではカメラ の移動方向ベクトルは算出できるが,その大きさには 不定性が残るという問題がある.その影響で3次元測 定においても対応点同士の相対的な位置関係は復元で きるが,観測対象の絶対的なスケールは復元できない.

この問題に関して, 久米ら [3] は全方位カメラを用い た SfM を水中に適用した際, 防水ケースにて発生する 屈折現象を考慮することで, スケール復元を可能にす る手法を提案し, シミュレーションを用いてその有効 性を示している. しかし, 久米らの手法は, 全方位カ メラを用いた条件でのみ実証されている. 全方位カメ ラは双曲面ミラーを用いることで周囲 360°を一度に撮 影できるカメラである. この全方位カメラは, 双曲面 ミラーの取り付け精度が要求されるなど, 取扱いが難 しい特殊なカメラであり, 実際の測定現場で用いる際, 振動により中心軸がずれ, 測定精度が不十分になるな どの困難が生じることが予想される.

以上の理由から、全方位カメラのような特殊なカメ ラではなく、一般的な装置における屈折を用いたスケー ル復元が可能な SfM 手法の適用が重要である.本研究 では、一般的な単眼カメラと屈折を発生させるための 透明平板のみで構成されるシステムにスケール復元が 可能な水中 SfM 手法が適用可能であることを示す.

図2 写像点を通る光線ベクトル

x

2. 透明平板を用いた手法の原理

レンズ

2.1 透明平板を用いたシステム

本研究で提案するシステムの概観を図1に示す.一 般的なカメラを用い,そのレンズの光軸と垂直になる ように,透明平板をレンズと観測点の間に配置する.今 回は水中計測を行うため,防水ケースにてカメラを覆 う必要がある.つまり,カメラから透明平板までの間 は空気,透明平板より観測点側は水となる.

2.2 光線追跡

ここでは透明平板を用いたシステムにて取得した画 像の対応点座標から,屈折を考慮した上で,対応点ま で光線追跡をする手順を述べる(図 2).

レンズの中心から,測定点の写像面における画像座 標 (u,v)を通るベクトルはカメラの焦点距離を fとす ると, (u,v,f)と表せるので,これを正規化した単位ベ クトルを内側光線ベクトル \mathbf{r}_{in} とする.なお,レンズ 中心から透明平板までの距離を l,透明平板の厚さを wとする.屈折現象は、この \mathbf{r}_{in} と透明平板の法線ベク トルが作る平面上で生じる.したがって、 \mathbf{r}_{in} を xy 平 面上に射影した方向に Ψ 軸を導入し、 Ψ 軸と z 軸の作 る平面内でスネルの法則を適用する(図3). \mathbf{r}_{in} の透 明平板への入射角を θ_1 ,屈折角を θ_2 ,また透明平板か

図3 スネルの法則による光線追跡

ら水中への屈折角を θ3 とすると、スネルの法則より、

$$n_1 \sin \theta_1 = n_2 \sin \theta_2, \tag{1}$$

$$n_2 \sin \theta_2 = n_3 \sin \theta_3,\tag{2}$$

が成り立つ.ここで, n_1 , n_2 , n_3 はそれぞれ,空気, 透明平板,水の屈折率である.この関係を利用して,屈 折面の外側から観測点に向かう外側光線ベクトル \mathbf{r}_{out} を算出する.まず,屈折面中の光線ベクトル \mathbf{r}_{mid} を求 める.簡単のため $\mathbf{r}_{in} = (\alpha_1, \beta_1, \gamma_1)^T$ と置く.屈折面 の単位法線ベクトルは, $\mathbf{N} = (0, 0, 1)^T$ と表せ, \mathbf{r}_{mid} は \mathbf{r}_{in} , \mathbf{N} と同一平面上にあるので,定数 p_1 , q_1 を用 いて,

$$\mathbf{r}_{\mathrm{mid}} = \begin{pmatrix} \alpha_2 \\ \beta_2 \\ \gamma_2 \end{pmatrix} = p_1 \begin{pmatrix} \alpha_1 \\ \beta_1 \\ \gamma_1 \end{pmatrix} + q_1 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad (3)$$

となる. r_{in} と N の内積の関係より,

$$\mathbf{r}_{\rm in} \cdot \mathbf{N} = |\mathbf{r}_{\rm in}| |\mathbf{N}| \cos \theta_1, \qquad (4)$$

$$\therefore \cos \theta_1 = \gamma_1,\tag{5}$$

が成立する. また, r_{in} と N の外積のノルムから,

$$\mathbf{r}_{\rm in} \times \mathbf{N} = |\mathbf{r}_{\rm in}| |\mathbf{N}| \sin \theta_1, \qquad (6)$$

$$\therefore \sin \theta_1 = \sqrt{(\alpha_1)^2 + (\beta_1)^2}, \qquad (7)$$

同様にして, **r**_{mid} と **N** の内積から

$$\mathbf{r}_{\mathrm{mid}} \cdot \mathbf{N} = |\mathbf{r}_{\mathrm{mid}}|| \mathbf{N} |\cos \theta_2, \qquad (8)$$

$$\therefore \cos \theta_2 = \gamma_2 = p_1 \gamma_1 + q_1, \tag{9}$$

が成立し、r_{mid} と N の外積のノルムから、

$$|\mathbf{r}_{\text{mid}} \times \mathbf{N}| = |\mathbf{r}_{\text{mid}}||\mathbf{N}|\sin\theta_2, \qquad (10)$$

$$\therefore \sin\theta_2 = \sqrt{(\alpha_2)^2 + (\beta_2)^2}$$

$$=\sqrt{(p_1\alpha_1)^2 + (p_1\beta_1)^2},\qquad(11)$$

となる.したがって,式(7),(11)より

$$\sin\theta_2 = p_1 \sin\theta_1, \tag{12}$$

となり,式(1)のスネルの法則と,式(12)から*p*₁を屈 折率のみを用いて,

$$p_1 = \frac{\sin \theta_2}{\sin \theta_1} = \frac{n_1}{n_2},\tag{13}$$

と表せる.また,三角関数の関係から,

$$\cos \theta_2 = \sqrt{1 - \sin^2 \theta_2} = \sqrt{1 - \left(\frac{n_1}{n_2}\right)^2 \sin^2 \theta_1},$$
 (14)

となり,式(9)に,式(5),(13)を代入し,

$$\cos \theta_2 = p_1 \gamma_1 + q_1 = \frac{n_1}{n_2} \cos \theta_1 + q_1,$$
 (15)

$$q_1 = -\frac{n_1}{n_2}\cos\theta_1 + \sqrt{1 - \left(\frac{n_1}{n_2}\right)^2 \sin^2\theta_1},$$
 (16)

となる.以上より,

$$\mathbf{r}_{\text{mid}} = \frac{n_1}{n_2} \mathbf{r}_{\text{in}} - \left\{ \frac{n_1}{n_2} \cos \theta_1 - \sqrt{1 - \left(\frac{n_1}{n_2}\right)^2 \sin^2 \theta_1} \right\} \mathbf{N}, \quad (17)$$

と求まる. 同様の手順により, **r**_{out} を求めると,

$$\mathbf{r}_{\text{out}} = \frac{n_2}{n_3} \mathbf{r}_{\text{mid}} - \left\{ \frac{n_2}{n_3} \cos \theta_2 - \sqrt{1 - \left(\frac{n_2}{n_3}\right)^2 \sin^2 \theta_2} \right\} \mathbf{N}, \quad (18)$$

となる.

ここで, **r**_{out} のレンズ光軸上の始点を点 D とすると, その位置ベクトルは

$$\mathbf{d} = (0, 0, d),\tag{19}$$

と表せる. d は幾何学的に求めることができ, 図 3 より,

$$d = l + w - \frac{l \tan \theta_1 + w \tan \theta_2}{\tan \theta_3}, \qquad (20)$$

となる.

2.3 幾何学的条件の適用

SfM では2つのカメラ視点から3次元空間上の点を 観測する. 今,2つのカメラ座標系をC, C'とする. そ れぞれのカメラ座標系のz軸はカメラレンズの光軸に 一致し,座標系の原点とカメラレンズ中心も一致する ものとする. このとき,回転行列Rを座標系Cで表し た座標を座標系C'での表現に変換する行列とし,並進 ベクトルtを座標系C で表した座標系C'の原点の位 置ベクトルと定義する. ここで,光線追跡により算出 したC, C'における外側光線ベクトルとその始点の位 置ベクトルをそれぞれ

$$\mathbf{r} = (x, y, z)^{\mathrm{T}},\tag{21}$$

$$\mathbf{d} = (0, 0, d)^{\mathrm{T}}, \tag{22}$$

$$\mathbf{r}' = (x', y', z')^{\mathrm{T}},$$
 (23)

$$\mathbf{d}' = (0, 0, d')^{\mathrm{T}},\tag{24}$$

とおく、今,屈折を考慮した幾何学的関係から,2つの カメラの外側光線ベクトルと,それぞれの始点を結ん

図4 屈折を考慮した幾何学的関係

だベクトルは同一平面上に存在することが分かる.この3つのベクトルを座標系Cでの表現でまとめると, $(\mathbf{t} + \mathbf{R}^{-1}\mathbf{d}' - \mathbf{d})$ と**r**と**R**⁻¹**r**'が同一平面上に存在する」と表現でき,

$$\mathbf{r} \cdot \left\{ (\mathbf{t} + \mathbf{R}^{-1}\mathbf{d}' - \mathbf{d}) \times \mathbf{R}^{-1}\mathbf{r}' \right\} = 0, \qquad (25)$$

と立式できる.この関係が成立する平面を図4中に赤 破線で示す.

式 (25) を各成分について計算し, 既知数と未知数の 積の形で表す.回転行列の正規直交性を利用して整理 すると,

$$\begin{pmatrix} xx' \\ yx' \\ yx' \\ zx' \\ xy' \\ xy' \\ xy' \\ xy' \\ yy' \\ zy' \\ xz' \\ yz' \\ xz' \\ dyx' + d'xy' \\ -dxx' + d'yy' \\ d'zy' \\ dyy' - d'xx' \\ -dxy' - d'xx' \\ -dxz' \\ \end{pmatrix}^{\mathrm{T}} \begin{pmatrix} r_{12}t_3 - r_{13}t_2 \\ r_{13}t_1 - r_{11}t_3 \\ r_{21}t_2 - r_{22}t_1 \\ r_{32}t_3 - r_{33}t_2 \\ r_{33}t_1 - r_{31}t_3 \\ r_{31}t_2 - r_{32}t_1 \\ r_{11} \\ r_{12} \\ r_{13} \\ r_{21} \\ r_{22} \\ r_{23} \\ r_{23} \\ r_{31} \\ r_{32} \\ \end{pmatrix} = 0, \quad (26)$$

$$\implies \mathbf{u}^{\mathrm{T}}\mathbf{g} = 0,$$
 (27)

とまとめることができる. ここで, r_{ij} は回転行列 R の *i*行 *j*列の成分の値であり, t_i は並進ベクトル t の *i* 番 目の成分の値である.式 (27)は各対応点について成り 立つので,n個の対応点に対し,

$$\mathbf{U} = (\mathbf{u}_1, \, \mathbf{u}_2, \, \mathbf{u}_3, \, \cdots, \, \mathbf{u}_n)^{\mathrm{T}}, \tag{28}$$

とおくと,

$$\mathbf{Ug} = \mathbf{0},\tag{29}$$

図5 水中シミュレーション結果

を満たす.したがって、gを最小二乗法を用いて求めれ ばよい.このとき、gの*i*番目の成分を g_i と置くと g_{10} $\sim g_{12}$ はRの1行目の成分に、 $g_{13} \sim g_{15}$ はRの2行目 の成分にそれぞれ等しいため、

$$g_{10}^2 + g_{11}^2 + g_{12}^2 = 1, (30)$$

$$g_{13}{}^2 + g_{14}{}^2 + g_{15}{}^2 = 1, (31)$$

が成り立ち,この制約によりgのノルムは一意に決まり,スケール復元が可能となる.

3. 3次元計測実験

3.1 水中シミュレーション実験

2章で述べた本システムにおける測定原理の有効性 をシミュレーションによって検証した.透明平板は厚さ 5mmのアクリル板(屈折率1.49)とし,水の屈折率は 1.33,空気の屈折率は1.0とした.また,カメラ座標原 点から透明平板までの距離を400mmとした.カメラの 運動は並進ベクトルを1つ目のカメラ座標におけるx, y, z方向で-300mm, -600mm, -50mm,回転行列の 3自由度をオイラー角表現で -0.15 π [rad], 0.15 π [rad], 0.1 π [rad] とした.観測点はカメラの観測可能な範囲内 にランダムに100個配置した.観測点がそれぞれのカ メラで結像する画像座標を求め,その後,本手法によ り3次元復元をし,真値との誤差を算出した.

水中シミュレーションの結果を図 5 に示す. 点群 が復元されていることが確認できる. 誤差平均は 3.4×10⁻⁸mmと十分に小さく, 3 次元復元が実現でき ていることが分かる. 以上より,本システムにおいて もスケール復元可能 SfM は適用可能であることが明ら かとなった.

3.2 水中実測実験結果

続いて,実測実験において本システムの有効性を検 証した.実験装置を図 6 に示す.測定物体は 1 辺が 100mm の立方体に 20mm 間隔で市松模様があるもの を用いた.今回はカメラを固定したままで,水を入れ た水槽の中で測定物体を移動させて画像を取得をした. これは相対的に,測定物体を固定し,カメラが移動し て画像を取得した場合と等価である.撮影は水槽の外 側から行い,透明平板として水槽の壁(アクリル製:厚 さ w=5mm)を利用し,カメラから透明平板までの距 離 l は 366.39mm とした.屈折率はシミュレーション

と同じ値とした.なお,画像に測定物体以外が写らないように,水槽の壁を黄色い紙で覆ってある.

得られた2枚の画像から対応点を手動にて65点検出 した.検出の結果を図7に示す.対応点は計測対象に おける直角をなす2面上の点を用いた.

検出した対応点から本手法を用いて復元した結果を 図8に示す.結果から,直線関係は保たれているが,対 応点の存在する2面がゆがんだ形状になっており,元 の形状が復元できていないことが確認できる.次章で この原因について考察する.

4. 考察

シミュレーションの結果から,理論的には透明平板 を用いた今回の手法に対しても適用可能であることが 確認できたが,実測実験における3次元復元の精度は 表1 精度の変化における誤差検証シミュレーション結果

丸め精度	計測誤差の平均 [mm]
整数	36.9
小数第1位	2.93
小数第2位	0.329
小数第3位	0.0127

+分ではなかった.この原因として考えられるのが,対応点の画像座標の精度である.実測実験では対応点は ピクセル単位の整数値で取得したため,真の画像座標 に対して誤差が生じたと考えられる.そこで,どの程 度の精度が要求されるかを調べるため,シミュレーショ ンを用いて,取得する観測点の画像座標の丸め精度を 整数から小数第3位まで変化させ,対応点検出におけ る誤差の影響を確認した.なお,シミュレーション条 件は3章と同じとした.

シミュレーションの結果を表1に示す.小数第2位 までの精度で対応点が取れると誤差平均が1mm以下 に収まることが確認された.このことから実測実験に おいては、サブピクセル精度で検出点を求めることが 必要である.しかし、本実験において対応点検出の際、 1ピクセル以上の誤差が生じることも十分に考えられ る.この画像座標の誤差が、3次元復元の精度が不十 分であった要因の1つであると考えられる.

他の誤差の原因としては,実測の際にカメラキャリ ブレーションにて取得するカメラパラメータの精度が 不十分であったことが考えられる.

5. 結論

全方位カメラを用いたシステムにおいて提案された, 屈折を利用することでスケール復元が可能となる SfM 手法が,透明平板と一般的なカメラという簡易なシス テムにおいても適用可能であることを示した.

サブピクセル精度での対応点検出や高精度なカメラ キャリブレーションなどによる実測実験の精度向上は 今後の課題である.

謝辞

本研究の一部は,財団法人旭硝子財団の援助を受けた.

参考文献

- Atsushi Yamashita, Hirokazu Higuchi, Toru Kaneko and Yoshimasa Kawata: "Three Dimensional Measurement of Object's Surface in Water Using the Light Stripe Projection Method", Proceedings of the 2004 IEEE International Conference on Robotis and Automation, pp. 2736–2741, 2004.
- [2] 河村拓史,斎藤英雄,中島真人: "時空間画像解析による 水中物体の3次元形状計測",計測自動制御学会論文集, Vol. 32, No. 4, pp. 607–609, 1996.
- [3] 久米大将,藤井浩光,山下淳, 淺間一: "全方位カメラを用 いたスケール復元が可能な水中 Structure from Motion", 2014 年度精密工学会春季大会学術講演会講演論文集, pp. 981–982, 2014.