ファジィ推論を利用した不整地の走行可能性推定に基づく 移動ロボットの進路方向判断手法の構築

田中 佑典 (東京大学) 池 勇勳 (東京大学) 山下 淳 (東京大学) 淺間 一 (東京大学)

1. 序論

近年,自律移動型ロボットに対する関心が高まって いる.その中でも,大きな注目を集めているのが無人車 両(UGV:Unmanned Ground Vehicle)である.UGV の活用例としては,災害発生時における捜索,救助活 動や耕地での農作業補助など多くの対象が考えられる. UGV の実環境への応用を念頭に置き研究および技術開 発を行った例として,DARPA グランドチャレンジが ある[1].ここでは主にUGV の不整地走行が中心的課 題として扱われている.

屋外,屋内を問わず不整地の存在する環境下でUGV による作業を行う際には,事故の発生を回避しつつ安 全に走行することが重要である.ここでは,UGV は滑 落や横転の危険がある不整地は回避し,走行可能な不 整地は走破するという判断が求められる.不整地の安 全な走行においては UGV 周囲の不整地に対して走行 可能性(traversability)を判断し,これを考慮した上 で適切な進路選択を行う必要がある.

移動ロボット周囲の環境に関する安全度を評価し,適 切な進路選択を実現する手法として Borenstein らが提 案した VFH (Vector Field Histogram)がある [2]. こ の手法では,レーザレンジファインダ(以下 LRF)あ るいは超音波センサによって移動ロボット周囲の物体 に関する距離情報を収集し,2値で表現される格子地図 を生成する.このようにして生成された格子地図から 各方向に対する安全度を算出し,最も安全な方向へ移 動ロボットが進路選択を行う手法である.しかし,こ の手法では障害物の回避が達成されている一方,傾斜 や段差のような地形に対する走行可能性判断には対応 不可能である.

これに対して、Yeらは VFH を生成するための情報 として、LRF によって移動ロボットの行動環境全域を 計測し、高さ地図(elevation map)が得られたとする 前提で走行可能性を判断する手法を提案した[3].高さ 地図とは、環境を2次元の格子状領域に分割し、各格子 にその地点の高さ情報を与えた地図のことである.こ の手法では、移動ロボットの行動環境全域に関する高 さ情報を統合し VFH を生成するため、環境全域に関 する既知の高さ地図が得られない状況は想定されてい ない.また、環境全域に関する高さ情報を統合してい ることにより、移動ロボット周囲近傍の不整地に関す る地形を考慮し危険回避を行うことが不可能である.

近藤らは、UGV の走行経験を教師データとして学習 させ不整地の走行可能性判断を行う手法を提案した [4]. この手法では走行可能性判断のために UGV による不 整地走行経験に基づく教師データを用意しなければな らない.

図1 提案システム

2. 提案手法

2.1 概要

本研究では移動ロボットの行動環境全域に関する既 知の高さ地図や不整地の走行データが得られない状況 を想定し,移動ロボット周囲の不整地に対する走行可 能性を判断する手法を構築する.提案手法では移動ロ ボット近傍の領域を対象としてセンサ情報により高さ 地図を生成する.生成された高さ地図から移動ロボッ ト周囲の不整地に対する走行可能性を判断し,安全性 が高いと見込まれる方向を移動ロボットの進路として 決定する.この手法の概要を図1に示す.

環境に関して生成される高さ地図の様子を図2に示 す.移動ロボット前方領域の高さ地図に対して複数の等 面積矩形領域への分割を行う.分割された各矩形領域 に対して,高さ情報から凹凸(surface roughness)と 傾斜(slope)を算出する.これら2つの値を入力とし て,矩形領域に対する走行可能性をファジィ推論によっ て求める.矩形領域に対して算出された走行可能性を 移動ロボット前方領域に関するVFHとして表現し,走 行可能性が高くかつ目標地点までの距離が最小となる

ここで、 $n_k = (a_k, b_k, c_k)^{T}$ は矩形領域kに対してフィッ ティングされた平面の法線ベクトルであり、 $x_i^{(k)}, y_i^{(k)}, z_i^{(k)}$ は矩形領域k内の各格子の座標値である.この最 適解は次の方程式を解くことにより求められる.

$$\begin{pmatrix} \sum_{i} (x_{i}^{(k)})^{2} & \sum_{i} x_{i}^{(k)} y_{i}^{(k)} & \sum_{i} x_{i}^{(k)} z_{i}^{(k)} \\ \sum_{i} y_{i}^{(k)} x_{i}^{(k)} & \sum_{i} (y_{i}^{(k)})^{2} & \sum_{i} y_{i}^{(k)} z_{i}^{(k)} \\ \sum_{i} z_{i}^{(k)} x_{i}^{(k)} & \sum_{i} z_{i}^{(k)} y_{i}^{(k)} & \sum_{i} (z_{i}^{(k)})^{2} \end{pmatrix} \begin{pmatrix} a_{k} \\ b_{k} \\ c_{k} \end{pmatrix}$$

$$= \begin{pmatrix} -\sum_{i} x_{i}^{(k)} \\ -\sum_{i} y_{i}^{(k)} \\ -\sum_{i} z_{i}^{(k)} \end{pmatrix},$$

$$(4)$$

ここで求められた平面の法線ベクトル $n_k = (a_k, b_k, c_k)^{\mathrm{T}}$ と矩形領域 k の方向ベクトル $d_k = (\cos \theta_k, \sin \theta_k, 0)^{\mathrm{T}}$ との内積を計算すること で傾斜 $\alpha_{SL}^{(k)}$ を求めることが可能である.

$$\alpha_{SL}^{(k)} = \left| \cos^{-1} \left(\frac{\boldsymbol{n}_k \cdot \boldsymbol{d}_k}{|\boldsymbol{n}_k|} \right) - \frac{\pi}{2} \right|.$$
 (5)

2.5 ファジィ推論

高さ情報を基に計算された 2 つの値,凹凸 $\alpha_{SR}^{(k)}$ と傾 斜 $\alpha_{SL}^{(k)}$ を入力としてファジィ推論によって矩形領域の 走行可能性を求める.ここでは代表的なファジィ推論 モデルである Min-Max-重心モデル(Mamdaniの推論 モデル)を使用する [5].

2.5.1 メンバーシップ関数

ここでは入力値が2種類となっているため,ファジィ 推論で使用するメンバーシップ関数は2種類となる.凹 凸 $\alpha_{SR}^{(k)}$ と傾斜 $\alpha_{SL}^{(k)}$ の入力に対して,図4に示すメン バーシップ関数を使用する.

各メンバーシップ関数は1つの実数入力値に対して, 矩形領域の程度に関するメンバーシップ度を出力する. メンバーシップ関数を通して,矩形領域の凹凸の程度が 平坦である方から順に {FLAT, MEDIUM, ROUGH} の中から,傾斜の程度が水平である方から順に {FLAT,

Area 1

方向を移動ロボットの進路として決定する.

Robot

2.2 領域分割

Area l

環境に関して生成された高さ地図に対して,移動ロ ボット前方領域を図3に示すように地図中の移動ロボッ ト位置を基準とした等面積矩形領域へと分割する.不 整地に関する凹凸 $\alpha_{SR}^{(k)}$ と傾斜 $\alpha_{SL}^{(k)}$ の計算,およびファ ジィ推論は,このようにして得られた矩形領域ごとに 行われる.ここで,図3における L は矩形領域の奥行 き,W は矩形領域の幅, θ_k は矩形領域間がなす角度で ある.

2.3 凹凸 (Surface Roughness)

矩形領域 k 内に存在する格子全てについて高さ情報 の推定標準偏差を算出し、これを凹凸と定義する.凹 凸 $\alpha_{SB}^{(k)}$ は次式から求められる.

$$\alpha_{SR}^{(k)} = \sqrt{\frac{1}{n_k - 1} \sum_{i \in \text{Area } k} (z_i^{(k)} - \overline{z_k})^2}, \qquad (1)$$

ここで、 n_k は矩形領域 k に含まれる格子の個数、 $\overline{z_k}$ は 矩形領域 k の高さ情報の平均値、 $z_i^{(k)}$ は矩形領域 k 内 の各格子が持つ高さ情報である.

2.4 傾斜 (Slope)

矩形領域 k の傾斜 $\alpha_{SL}^{(k)}$ は,矩形領域内の各格子が持 つ高さ情報を基に平面をフィッティングさせ,得られた 平面の傾きとして定義する.矩形領域の高さ情報に対 してフィッティングされた平面は次の形で表現される.

$$ax + by + cz + 1 = 0, (2)$$

ここで, $n = (a, b, c)^{T}$ は平面の法線ベクトルであり, x, y, z は各格子の座標値である.このとき,次の目

的関数 f を最小化する係数の組 (a_k, b_k, c_k) を決定する

 $f = \sum_{i \in \text{Area} k} \left(\frac{a_k x_i^{(k)} + b_k y_i^{(k)} + c_k z_i^{(k)} + 1}{\sqrt{a_k^2 + b_k^2 + c_k^2}} \right)^2, \quad (3)$

ことにより、平面のフィッティングを行う.

		Surface roughness		
		FLAT	MEDIUM	ROUGH
	FLAT	HIGH	MODERATE	POOR
Slope	SLOPED	MODERATE	LOW	POOR
	STEEP	POOR	POOR	POOR

図5 ファジィルール

Defuzzifier (traversability)

図6 出力ファジィ集合

SLOPED, STEEP}の中から判断される. ここでは各 メンバーシップ関数について, 1 実数入力値に対しメ ンバーシップ関数との交点が2点存在し,各交点に関 して程度と値が割り当てられる.結果として, 1つの メンバーシップ関数からは程度と値の組が2組出力さ れる.

2.5.2 ファジィルール

2つのメンバーシップ関数からの出力に対して if-then 形式のルールによってメンバーシップ度と走行可能性 に関する判定の組を決定する.メンバーシップ度の決 定である前件部(if)では,論理積(AND)を用いるこ とにより値が選択される.走行可能性判定を行う後件 部(then)では,図5に示すルールに従って判定(程度 のラベル付け)が行われる.ここでは,走行可能性が高 い方から順に {HIGH, MODERATE, LOW, POOR} の判定がなされる.

2.5.3 非ファジィ化

ファジィルールによって決定された矩形領域のファ ジィデータ(メンバーシップ度と程度の組)を,走行 可能性に関する出力ファジィ集合を用いて実数値へ変 換し,出力する.ここでは,図6の出力ファジィ集合 を使用し,ファジィデータの重心を出力ファジィ集合 の横軸に関して求めることにより,出力値を算出する.

2.6 Vector Field Histogram (VFH)

各矩形領域に関して出力されたファジィ推論による 走行可能性を VFH の形式によって表現する.移動ロ ボット前方領域を矩形領域へ分割し,ファジィ推論の 出力から矩形領域ごとに算出された走行可能性のうち,

図8 実験2:環境

あらかじめ設定された閾値 T_{limit} を下回ったものを走 行可能であると判断する.走行可能であると判断され た矩形領域のうち,移動ロボットに設定された目標地 点と矩形領域短辺中点との距離が最小となる領域を移 動ロボットの進路方向として決定する.

シミュレーション実験

提案手法により移動ロボット周囲近傍の不整地の走 行可能性を判断し,安全性が高いと見込まれる矩形領 域を進路として決定可能か検証を行った.図7および図 8に示すような環境をシミュレータ上で構築し,システ ムが決定する進路方向を確認する実験を行った.本実 験において与えた各パラメータ値は実験1,実験2共 にL = 0.85m, W = 0.7m,総矩形領域数l = 10,走 行可能性閾値 $\tau_{limit} = 250$ である.

実験1に関するシミュレータ上の結果を図9(a)に, 生成されたVFHを図9(b)に示す.実験2に関するシ ミュレータ上の結果を図10(a)に,生成されたVFHを 図10(b)に示す.与えられた閾値を下回る走行可能性 が算出された矩形領域を移動ロボットは安全であると 判断し,このうち目標地点までの距離が最小となる矩 形領域の方向が進路として選択されることが示された. 一方,高低差の大きな段差が存在する矩形領域,小さ な凹凸が連続して存在する矩形領域,および侵入不可 能な壁が存在する矩形領域は走行可能性が低いと判断 され,進路の候補には入らなかった.

4. 結論

移動ロボット近傍の不整地に関する高さ地図を生成 し、移動ロボット前方に対して凹凸と傾斜の2つの値 を求めた.凹凸と傾斜をファジィ推論に対する入力と し、ファジィルール、非ファジィ化の過程を通して得 られた矩形領域に対する走行可能性を VFH の形式で 表現することにより、安全性が高いと見込まれる進路 方向の判断が可能であることが示された.

今後の展望としては、より複雑な環境へのシステム の適用検討、大域的経路生成とのシステム統合等が考 えられる.特に、計測が困難な障害物を含む環境では

センサデータの欠落により凹凸や傾斜の算出が容易で はない.このような状況下でも安定的に振る舞うこと が可能な計算法と計測法の確立が必要である.今後の 研究では,さらに複雑化された環境下でも安全な経路 選択をロバストに行うことが可能な手法の確立に取り 組む計画である.

参考文献

- C. Crane, D. Armstrong, R. Touchton, T. Galluzzo, S. Solanki, J. Lee, D. Kent, M. Ahmed, R. Montane, S. Ridgeway, S. Velat, G. Garcia, M. Griffis, S. Gray, J. Washburn, and G. Routson: "Team CIMAR's NaviGATOR: An Unmanned Ground Vehicle for the 2005 DARPA Grand Challenge," *Journal of Field Robotics*, vol. 23, no. 8, pp. 599–623, 2006.
- [2] J. Borenstein and Y. Koren: "The Vector Field Histogram-Fast Obstacle Avoidance for Mobile Robots," *IEEE Transactions on Robotics and Au*tomation, vol. 7, no. 3, pp. 278–288, 1991.
- [3] C. Ye and J. Borenstein: "A Method for Mobile Robot Navigation on Rough Terrain," *Proceedings of the* 2004 IEEE International Conference on Robotics and Automation, pp. 3863–3869, 2004.

- [4] 近藤正人,須永賢治,深澤友輔,小林祐一,金子透,平 松裕二,藤井北斗,神谷剛志: "無人車両の走行経験を利 用した LRF 情報にもとづく走行可能性推定,"第14回シ ステムインテグレーション部門講演会, pp. 1647–1652, 2013.
- [5] E. H. Mamdani: "Application of Fuzzy Algorithms for Control of Simple Dynamic Plant," *Proceedings* of the Institution of Electrical Engineers Control and Science, vol. 121, no. 12, pp. 1585–1588, 1974.