
Analysis of two approaches to location estimation based on wireless
signal strength propagation and Gaussian Processes

○ ミヤグスク レナート (東京大学) 正 山下 淳（東京大学）
正 淺間 一（東京大学）

Renato Miyagusuku, The University of Tokyo, miyagusuku@robot.t.u-tokyo.ac.jp
Atsushi Yamashita, The University of Tokyo
Hajime Asama, The University of Tokyo

Robot localization is the problem of determining a robot’s pose based on sensory informa-
tion. This problem is consider one of the fundamental issues for autonomous robotics, hence
its importance. Localization systems using wireless signal strength measurements have gained
popularity in recent years, probably due to the proliferation of wireless Local Area Networks
using Wi-Fi. Among these systems Gaussian Processes excel due to its flexibility and ability
to model a wide variety of mappings. This paper presents an analysis and comparison of two
different approaches for the localization problem based on wireless signal strength measurements.
Our main motivation is the use of these learned mappings for robust localization.

Key Words: mapping, Localization, Gaussian Processes

1 Introduction

Robot localization is considered a key problem in mak-
ing a robot trully autonomous, as robots need to estimate
their pose within a fixed coordinate system in order to deter-
mine what action to do next.This pose has to be estimated
based on sensory information, popular sensors used for loca-
tion include GPS, laser range finders, RGB-D cameras, sonars,
among others. The adition of new sensors usually implies
an improvement on precision and robustness - thanks to re-
dundancy - of the approach, if well implemented. Thanks to
the proliferation of wireless Local Area Networks, localization
systems using wireless signal strength measurements have be-
come a compelling choice, as the hardware set-up (the wireless
network) is already in place in most environments. Among
the methods used for signal strength-based location, Gaus-
sian Processes excel due to its flexibility and ability to model
a wide variety of mappings. Gaussian Processes are flexible
non-parametric distributions used for learning input-output
mappings. They are fully defined by a mean and a covariance
function. Previous research has shown promising results in
signal strength-based location estimation using Gaussian Pro-
cesses [1], even without explicit knowledge of the positions
were the data was taken [2]. Gaussian Processes can be clas-
sified as a fingerprinting technique. Fingerprinting algorithms
collect features (fingerprints) of in a map and then estimate
the location of an object by matching new measurements to
previously acquired data. One of the first works to success-
fully employ fingerprinting for wireless signal strength-based
localization was RADAR [3]. Other classifications for wire-
less signals-based location techniques are triangulation, and
proximity - being Place-Lab [4] possibly the most well know
representative. A more comprehensive review on previously
developed systems can be found at [5].

2 Gaussian Processes

As explained by Rasmussen [6] Gaussian Processes are a
generalization of normal distributions to functions, describing
functions of finite-dimensional random variables. In a nut-
shell, given some training points, a Gaussian Process gener-

alizes this points into a continuous function where each point
is considered to have normal distribution, hence a mean and
a variance. The essence of the method resides is assuming a
correlation between values at different points, this correlation
is characterized by a covariance function or a kernel.

Formally, given some training data (X,y) where X ∈
Rn×d is the matrix of n input samples xi ∈ Rd and y ∈ Rn the
vector of corresponding outputs yi ∈ R. Two assumptions are
made. First, each data pair (xi,yi) is assumed to be drawn
from a noisy process:

yi = f(xi) + ϵ, (1)

where ϵ is the noise generated from a Gaussian distribution
with known variance σ2

n.
Second, any two output values, yp and yq, are assumed

to be correlated by a covariance function based on their input
values xp and xq:

cov(yp,yq) = k(xp,xq) + σ2
nδpq (2)

where k(xp,xq) is a kernel, σ2
n the variance of ϵ and δpq is one

if p = q and zero otherwise.
Given these assumptions, for any finite number of data

points, the Gaussian Process can be considered to have a mul-
tivariate Gaussian distribution:

y ∼ N (m(x), cov(xp,xq)) (3)

and therefore be fully defined by a mean function m(x) and
a covariance function cov(xp,xq). However, it is common for
m(x) to be set to zero, in which case it is only necessary to
define the kernel of the covariance function in order to fully
describe the Gaussian Process. It is important to notice that
setting the mean to zero does not imply that at an arbitrary
point x∗, the function f(x∗) will be zero, it simply states that
given no information, the expectation of the point will be zero.

2.1 Kernels

Kernels are functions that depict the relationship between
any to inputs xp and xq. Any function can not be a kernel, in

general the function must always yield positive semi-definite
covariance matrices.

The perhaps most popular kernel function is the squared
exponential kernel, also know as Gaussian or radial basis func-
tion kernel. Which is defined as:

k(xp,xq) = σ2
f exp

(
− (xp − xq)

2

2l2

)
, (4)

with hyper-parameters: variance (σ2
f) and lengthscale = l.

2.2 Prediction

For the prediction of f∗ = f(x∗) of an unknown data points
x∗, eq. (3) can be written as:[

y
f∗

]
∼ N

(
0,

[
K+ σ2

nIn K∗
KT

∗ k(x∗,x∗)

])
, (5)

where K is k(X,X), K∗ is k(X,x∗) and In is the n×n identity
matrix. Now, conditioning f∗ to all other variables (x∗, X, y),
we obtain a probability distribution of f∗:

f∗|x∗,X,y ∼ N (f̄∗, cov(f∗)), (6)

where,

f̄∗ = KT
∗ (K+ σ2

nIn)
−1y, (7)

cov(f∗) = k(x∗,x∗)−KT
∗ (K+ σ2

nIn)
−1K∗. (8)

In case of multiple outputs, that is training data (X,Y)
where Y ∈ Rn×m is the matrix of m output samples y, a
different Gaussian Process can be generated for each vector
y, but more commonly than not all vectors are generated us-
ing the same Gaussian Process, that is the same covariance
function. Therefore eq. (7) simply becomes:

F̄∗ = KT
∗ (K+ σ2

nIn)
−1Y, (9)

and eq. (8) remains the same.

It is thanks to this ease of conditioning variables that
Gaussian Processes are so powerful.

2.3 Optimization

What is left now it to optimize the covariance function for
our training data. Considering θ a set of hyper-parameters
that define the covariance function, and the training points
(X,y). The maximum a posteriori estimation of θ occurs
when we maximize θ|X,y From Bayes, we have that:

θ|X,y ∝ y|X, θ × θ|X (10)

However, if the a priori distribution p(θ|X) holds little to no
information, the following also holds:

θ|X,y ∝ y|X, θ (11)

Therefore, maximizing θ|X,y is also equivalent to minimizing
the negative log likelihood (nll) of y|X, θ

nll = 0.5 log |K+ σnIn|+ 0.5yT (K+ σnIn)
−1y

+ 0.5n log(2π) (12)

In case of multiple outputs under the same covariance
function, the nll becomes the summation of the nll for each
output vector y

3 Modeling wireless signal strength

Using Gaussian Processes to solve the location estima-
tion problem using wireless strength measurements we have
a choice to make, either using signal strength measurements
as inputs and obtaining estimated positions as outputs; or
using position information as inputs and obtaining estimated
signal strength measurements as outputs - which can be used
to estimate the likelihood of a signal strength sample being
originated from any given position, and solving the problem
with a particle filter or any other similar localization algo-
rithm. The first approach is straight forward, the goal of the
localization algorithm is to find suitable position estimations
based on signal strength samples, and that is exactly what
the Gaussian Process will do. However, as we will show in the
following sections, the second option, although more complex,
is more robust.

Formally, given some training data (Z,P) where Z ∈
Rn×nAP is the matrix of n signal strength samples zi ∈ RnAP

corresponding to nAP different access points present in the
environment, and P ∈ RnAP×2 is the matrix composed by the
corresponding vectors pi ∈ R2 of the x, y positions where the
measurements were taken.

3.1 First approach

The first approach considers generating a Gaussian Pro-
cess with inputs Z and outputs P, and use it to predict un-
known positions P∗ given new signal strength samples z∗,
from eq. (7) we have that the expectation for the unknown
positions would be:

P̄∗ = KT
∗ (K+ σ2

nIn)
−1P. (13)

Given enough training points, this approach efficiently pre-
dicts the location of new signal strength samples. Further-
more, as it is a straight forward approach to the location es-
timation problem, it is faster than the second one. However
the main issue with this approach is its robustness. As it will
be shown in the next section, when signal samples are scaled
or the signal strength sample for a particular access point is
missing, the performance of the system can be severely af-
fected.

3.2 Second approach

The second approach considers generating a Gaussian Pro-
cesses with inputs P and outputs Z, and use it to generate
signal strength probability distributions z|p. First, we can
compute z∗ for any p∗ ∈ p, based on eqs. (7,8):

z̄∗ = KT
∗ (K+ σ2

nIn)
−1Z, (14)

cov(z∗) = k(p∗,p∗)−KT
∗ (K+ σ2

nIn)
−1K∗, (15)

so from the formula for multivariate Gaussian distribution
we have:

z|p = (2π ∗ cov(z∗))−
nAP

2

exp
(
−(z− z∗)

T (cov(z∗))
−1(z∗)

)
, (16)

we will also define log z|p as it will be also used for visu-
alization in the next section:

log z|p = −0.5nAP log(2π ∗ cov(z∗))

− (z− z∗)
T (cov(z∗))

−1(z− z∗). (17)

Given enough training points, this approach also efficiently
predicts the location of new signal strength samples. Further-
more, scaling of signal samples almost do not affect its perfor-
mance, nor do missing.

4 Simulations

For the implementation of both approaches we used the
open source library GPy [7], using an rbf kernel - same as
kernel described in subsection 2.1, with hyper-parameters
rbf.variance and rbf.lengthscale and gaussian noise, corre-
sponding respectively to σf ,l, and σn; and the optimization
was performed using an LBFGS gradient descend algorithm.
The dataset used for testing was an open source dataset1 with
signal measurements obtained from a tour around University
of Washington Paul Allen building [2], consisting of measure-
ments for 30 access points for 215 training points and 179
testing points. A value of 92 dBm was added to the true mea-
sured values and then scaled by a factor of 15. Failing to get
any data in a mesurement, or acquiring values lower than 90
dBm, defaults to zero. This is in consideration of typical wire-
less network controller sensitivity of up to -90 dBm. Positions
were measured in meters. For all simulations the complete set
of training points was used for optimization, and the set of
testing points was used for testing. To asses the robustness of
the method we considered two possible cases. First, the scal-
ing of signal strength measurements by an arbitrary factor;
and second, the setting of 0. to all measurements originated
from some specific access point. The first case can occur when
the hardware used for taking the samples is changed; or if a
constant object such as an additional sensor is mounted on
the robot, obstructing incoming signals. In order to test the
robustness of the system in this particular case, each approach
was tested using testing points scaled by 0.8 and inspecting its
new performance. The second case can temporarily occur by
occlusions in the line of sight between transmitter and recep-
tor or by random anomalies in the signal propagation, it can
also occur permanently in case of access point malfunction.
This case is tested by artificially setting the values of access
points 15 and 20 to zero.

4.1 First approach

Using the training points from the first dataset a Gaussian
Process following the description of the first approach was
optimized. The resulting hyper-parameters were:

rbf.variance = 81.54
rbf.lengthscale = 4.79
gaussian noise = 0.244

This model was used for all simulations, as the errors are
supposed to be induced after the system has already been
trained.

Figure 1a shows the output of the system when fully op-
erational. Blue lines represents p∗ and red ones the ground
truth. As we can see from Fig. 1b, for the first error case,
the performance of the estimation drops at all testing points,
showing that this approach is quite susceptible to scaling. Fig-
ure 1c shows the output for the second error case, where the
system’s performance evidently drops for test points near the
upper left corner. However, for all other regions, the systems
seems only slightly affected.

0 5 10 15 20 25 30 35

5

10

15

20

25

30

35

40

WiFi Localization with Gaussian Processes

True Location
Predicted Location

(a) No errors

0 5 10 15 20 25 30 35

5

10

15

20

25

30

35

40

WiFi Localization with Gaussian Processes

True Location
Predicted Location

(b) Signal strength mea-
surements scaled by 0.8

0 5 10 15 20 25 30 35

5

10

15

20

25

30

35

40

WiFi Localization with Gaussian Processes

True Location
Predicted Location

(c) Access points 15 and 20
values set to zero

Fig.1: Expected positions obtained using the first ap-
proach. Given some testing points, blue lines represents
estimated positions while red ones the ground truth.

x[m]

20

10

0

10

20

30
40

50

y[m]

10

0

10

20

30

40

50

60

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

z|p

Fig.2: Expected values. Blue dots represent signal
strength samples, while the surface shows the learned
mapping expected values

x[m]

20

10

0

10

20

30
40

50

y[m]

10

0

10

20

30

40

50

60

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

z|p

Fig.3: Covariance values. Blue dots represent signal
strength samples, while the surface shows the learned
mapping covariance values

0 5 10 15 20 25 30
0

10

20

30

40

−96

−84

−72

−60

−48

−36

−24

−12

0

0 5 10 15 20 25 30
0

10

20

30

40

−126

−108

−90

−72

−54

−36

−18

0

0 5 10 15 20 25 30
0

10

20

30

40

−125

−110

−95

−80

−65

−50

−35

−20

−5

0 5 10 15 20 25 30
0

10

20

30

40

−84

−72

−60

−48

−36

−24

−12

0

(a) Log likelihood of z∗|p for different test points

0 5 10 15 20 25 30
0

10

20

30

40

−88

−76

−64

−52

−40

−28

−16

−4

0 5 10 15 20 25 30
0

10

20

30

40

−96

−84

−72

−60

−48

−36

−24

−12

0

0 5 10 15 20 25 30
0

10

20

30

40

−88

−76

−64

−52

−40

−28

−16

−4

0 5 10 15 20 25 30
0

10

20

30

40

−75

−66

−57

−48

−39

−30

−21

−12

−3

(b) Log likelihood of z∗|p for different test points with measurements scaled by 0.8

0 5 10 15 20 25 30
0

10

20

30

40

−96

−84

−72

−60

−48

−36

−24

−12

0

0 5 10 15 20 25 30
0

10

20

30

40

−96

−84

−72

−60

−48

−36

−24

−12

0

0 5 10 15 20 25 30
0

10

20

30

40

−100

−88

−76

−64

−52

−40

−28

−16

−4

0 5 10 15 20 25 30
0

10

20

30

40

−84

−72

−60

−48

−36

−24

−12

0

(c) Log likelihood of z∗|p for different test points with measurement of access points 15 and 20 set to 0.

Fig.4: Maps show the log likelihood of a signal sample z∗ for every position pi in the (x,y) coordinates. The black X
represents the testing point position and the contour plot the log likelihood of the signal sampled at that point. Red
values indicate high probabiliy while blue ones indicate low

4.2 Second approach

Using the same training points from the first dataset a
Gaussian Process following the description of the second ap-
proach was optimized. The resulting hyper-parameters were:

rbf.variance = 0.526
rbf.lengthscale = 4.46
gaussian noise = 0.125

Figures 2 and 3 show mappings generated by the optimized
Gaussian Process for one access points - a pair of such map-
pings was generated for each acces point. Using all these, the
log likelihood for signal strength measurements at any point
of the map were computed by eq. (17). Figure 4a shows
the likelihoods at 4 different arbitrarily selected test points
(25,73,125,175), when no errors in the measurement are con-
sidered. For the first error case Fig. 4b shows that although
the log likelihood diminishes, it does so almost equally for all
points p, therefore, the systems performance in general is not
that affected. Same as with the error case 2 shown at Fig. 4c.

5 Conclusions

Simulations have shown the feasibility of using Gaussian
Processes to solve the signal strength-based location estima-
tion problem. Between the two proposed approaches, the sec-
ond one has been proved to be more robust. Nonetheless, it
is important to mention that the first approach’s robustness
against the second error scenario is comparatively similar, and
that it is faster as its outputs solve the location estimation
problem without requiring any additional algorithm, such as a

1https://github.com/sods/ods

particle filter - and the additional computations this involves.

6 Acknowledgments

This work was in part supported by Tough Robotics
Challenge, ImPACT Program (Impulsing Paradigm Change
through Disruptive Technologies Program).

References
[1] Brian Ferris, Dirk Haehnel, and Dieter Fox. Gaussian processes

for signal strength-based location estimation. In In proc. of
robotics science and systems. Citeseer, 2006.

[2] Brian Ferris, Dieter Fox, and Neil D Lawrence. Wifi-slam using
gaussian process latent variable models. In IJCAI, volume 7,
pages 2480–2485, 2007.

[3] Paramvir Bahl and Venkata N Padmanabhan. Radar: An in-
building rf-based user location and tracking system. In INFO-
COM 2000. Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE,
volume 2, pages 775–784. Ieee, 2000.

[4] Anthony LaMarca, Yatin Chawathe, Sunny Consolvo, Jeffrey
Hightower, Ian Smith, James Scott, Timothy Sohn, James
Howard, Jeff Hughes, Fred Potter, et al. Place lab: Device
positioning using radio beacons in the wild. In Pervasive com-
puting, pages 116–133. Springer, 2005.

[5] Hui Liu, Houshang Darabi, Pat Banerjee, and Jing Liu. Sur-
vey of wireless indoor positioning techniques and systems. Sys-
tems, Man, and Cybernetics, Part C: Applications and Re-
views, IEEE Transactions on, 37(6):1067–1080, 2007.

[6] Christopher KI Williams and Carl Edward Rasmussen. Gaus-
sian processes for machine learning. the MIT Press, 2(3):4,
2006.

[7] The GPy authors. GPy: A gaussian process framework in
python, 2012–2014.

