
Rotation Estimation of a Complete Omnidirectional Camera using Line Features

Sarthak Pathak∗ Alessandro Moro∗ Atsushi Yamashita∗ Hajime Asama∗

1. Introduction

Rotation estimation with cameras is important

for flying robot navigation. Usually, it is performed

using a single camera by keeping track of some strong

features such as corners or lines within the environ-

ment and observing their motion. However, with a

normal camera, the field of view is quite limited and

this can lead to an error because information is ob-

tained from a small section of the scene. Also, features

can leave the frame of the camera and can no longer

be used for estimating the rotation. If we make use

of an Omnidirectional camera which has a wide field

of view (up to 4π steradians), we can overcome these

issues.

There has been much similar research in the past

about estimating the motion and 3D structure of the

environment of a moving omnidirectional camera. For

example, [2] used a catadioptric camera to perform

visual servoing for human-robot interaction. Back

in 2004, [3] presented a method to use catadioptric

cameras with optical flow estimation to provide vi-

sual odometry for rover. Similarly, [9] showed a very

accurate technique for control of a vehicle using 1-

point RANSAC, while [5] also talked about Structure

from Motion in textureless environments with omni-

directional images using parallel lines. However, all

these methods are mostly suitable for ground robots

while flying robots have more complicated motion.

The method in [4] showed how to determine the al-

titude, roll, and pitch of a flying robot by detecting

parallel lines in the catadioptric omnidirectional im-

age. The technique used in [1] described a way to

obtain the yaw angle using vanishing points in cata-

dioptric images. These methods assumed the exis-

tence of vanishing points and parallel lines, although

they may not always be present in every scene. Mean-

while, [6] talked about estimating the translation us-

ing only lines in images obtained by multiple central

cameras. However, the line matching was done man-

ually. Furthermore, most of the described methods

use catadioptric cameras and are not truly ‘Omnidi-

rectional’ as they do not deal with the complete 4π

steradians. They still retain the problem of features

leaving the frame of the camera and thus being ren-

dered of no use. In contrast, [8] used complete omnidi-

rectional images, wherein the authors introduced and

evaluated several reprojection error models for solving

motion estimation, and matched keypoints in order

to densely reconstruct a scene. However, the tech-

∗Department of Precision Engineering
The University of Tokyo

(a)

2π sr 2π sr

(b)

Fig.1 The Ricoh Theta camera (a) with its side
view (b) showing two Fisheye cameras with
4π steradians (sr) field of view (solid angle).

nique seems to be quite computationally heavy and

not suited for a realtime robotics platform. Thus, to

build on the plethora of previous work, our aim is to

formulate a rotation estimation technique using the

information present in all directions of the robot so

that the accuracy and robustness is maintained. We

have decided to use line features for this approach as

they provide a more stable matching and localization

as compared to point features. Moreover, they are not

affected much by occlusion because we make use of the

entire 4π steradians to perform feature detection and

matching, as we will show in later sections.

To obtain the omnidirectional image, we can use

two oppositely pointed fisheye cameras (each of which

can provide a 180◦, or 2π steradians field of view)

and stitch them into a complete image of 4π steradi-

ans. For this work, we used the Ricoh Theta camera

which already has perfectly aligned cameras (Fig. 1).

The basic outline of the algorithm involves obtaining a

pair of fisheye images at two different times, stitching

the images to form an omnidirectional image, estimat-

ing and matching line features in the stitched image,

and finally determining the rotation matrix. As men-

tioned before, using line features has several advan-

tages such as a more stable matching and accurate

localization of camera position (as a larger number

of points are used) without an increase in processing

time. Furthermore, since the number of line features

detected and needed is usually quite less, we can per-

form a full brute force search across all the lines with-

out reducing the search area or other such limitations

imposed when point features are used. Thus, it can be



made stable even for large changes and complicated

motion patterns.

We capture such an omnidirectional image and

treat it as a spherical image. We base all our pro-

cessing on this spherical image, thus avoiding the

distortions that usually affect normal fisheye images.

The two other major advantages of this are that the

problem of features exiting the frame is eliminated,

and secondly, since no information is going out of

the frame, constructing a matching tecnhique also be-

comes easier.

In contrast with [6], we attempt to perform line

matching in omnidirectional images by taking advan-

tage of the fact that the spherical image is continuous

in all directions. If we project a line segment in this

spherical image to infinity in both directions, it will

meet itself around the sphere. This ensures that we

don’t need to locate the end points of the line seg-

ments in order to match them. (Using a similar tech-

nique, [7] estimated the visual odometry of a ground

robot.)

2. Obtaining Complete Omnidirec-
tional Images

The first step is to obtain the complete omnidi-

rectional image. We make use of two fisheye cameras

(each of which can capture 180◦ or 2π steradians).

The camera shown in Fig. 1, is mounted on a flying

robot. Images are captured at the same time from

each camera. Each fisheye image (Fig. 2) forms a

half sphere when reprojected on the surface of the

unit sphere, according to the Omnidirectional Camera

Model [10]. The two halves can be combined together

to obtain the complete omnidirectional image.

We used the omnidirectional camera toolbox [10]

to calibrate each fisheye camera. After obtaining the

calibration parameters, we can project each point on

the fisheye image to its location on the unit sphere, as

shown in Fig. 3. Once we obtain both half spheres,

we can combine them to form the complete spherical

image. To show this image on paper, it has been

unrolled in an Equirectangular Projection (Fig. 4).

(a) (b)

Fig.2 Individual Fisheye Images from the oppo-
sitely placed Fisheye cameras

(u,v)

u
v

Z
Y

X

Projection 
Function

(X,Y,Z)

Fisheye
Image

Camera
Sensor

Spherical
Image

Incident
Ray

Fig.3 Omnidirectional Camera Model: Projecting
a point on the unit half sphere from one fish-
eye image. Two of these placed opposite to
each other can give us the complete sphere.

Fig.4 Spherical Image constructed from the indi-
vidual fisheye images from Fig. 2 (Equirect-
angular Projection)

3. Line Detection and Matching

As mentioned before, line features are more sta-

ble as compared to point features for matching and

localization. We use the popular probabilistic hough

transform directly on the spherical image to detect

lines. Before that, we have to first look at how real

world line segments are projected on the spherical im-

age.

As can be seen in Fig. 5, a line in the real world

is projected as part of a Great Circle on the Spherical

Image. Each great circle has a unique normal vector

from the center of the sphere and can be described by

its direction cosines cos(a), cos(b), and cos(c) (where

a, b, and c are the respective euler angles).

The motion of any flying robot is such that it

needs to rotate in order to change its direction of

translation. When the flying robot is rotating mid

air, these great circles and the associated normal vec-

tors change their orientation. (Note that this motion

is not restricted to rotation. Translation will cause

the distances between the lines and the center of the

camera to change but will affect the orientation of the

great circle only slightly, hence it can be ignored.) If

we are able to obtain the rotation of two of these great

circles, we can estimate the complete rotation of the

flying robot (Fig. 6).

In order to build the accumulator for the hough



L1

N1

L2

X

Y

Z

N2

Fig.5 Projection of a line on the Spherical Image.
L1 and L2 are the real world lines projected
as great circles on the sphere. N1 and N2
are the respective normal vectors from the
centers of the circles

X

Y

Z

Rotation

Frame t1

Frame t2

L1t1
L2t1

N2t1

L2t2

L1t2

N2t2

N1t2X

Y

Z

N1t1

Fig.6 Effect of rotation on the line projections in
two frames (t1 and t2). Lines L1, L2 and
their normals N1, N2 rotate when the cam-
era rotates (with respect to the camera’s
frame of reference.)

transform, every line can be parameterized by the nor-

mal vector of its great circle according to the equation

X cos(a)+Y cos(b)+Z cos(c) = 0, where X, Y , and Z

are the coordinates of the pixels on the surface of the

sphere. We know that cos2(a) + cos2(b) + cos2(c) = 1.

Thus, we only need two of these angles to obtain the

third one and the hough parameterization of the line

can be performed with only two parameters, a and b.

Since these parameters are angles that have the range

[0◦, 180◦], the hough accumulator has only 180 × 180

cells which makes processing efficient. (Usually, the

size of the accumulator array is a major limitation in

the use of the hough transform.) Thus, the proba-

bilistic hough transform is performed directly on the

sphere using its Canny edges to generate votes. Fig.

7 shows the result of this operation.

Since it is a complete spherical image, each line

segment extended in both directions forms a great cir-

cle as shown in Fig. 5. We can use all the points on

Fig.7 Detection of lines in the omnidirectional im-
age using the probabilistic hough transform
(equirectangular projection). The great cir-
cles subtended by each line segment are
shown in the figure.

this great circle for matching. Thus, we can elimi-

nate the usual line matching problem - detecting the

line segment ends. We only need to match the pixels

on the circle. Since it is difficult to find a particu-

lar starting point for ordering the data on the circle,

we have to make use of statistical, order independent

methods. Taking the histogram of the intensities of

all the pixels on the circle provides a good feature vec-

tor for the line and matching these vectors using the

L2-norm which works quite well (Fig. 8). Moreover,

since we use the entire 360◦ circle, occlusion becomes

a non-issue for the matching.

(a) Frame t1

(b) Frame t2

Fig.8 Line Matching between Frames t1 (a) and
t2 (b) using Histograms. The dotted areas
show the line segments corresponding to the
great circles. The camera was manually ro-
tated by 30◦ (yaw) and 15◦ (pitch).



4. Rotation Estimation

As mentioned earlier, the rotation can be esti-

mated from two line matches. This requires a simple

transformation. The normal vectors ~N1 and ~N2 (for

lines L1 and L2) are taken to be of unit length. Thus,
~N1+ ~N2 and ~N1− ~N2 are always perpendicular, and

along with ~N1 × ~N2, they form an orthogonal basis.

Using this orthogonal basis, we can easily calculate

the angles between corresponding axes of the bases

formed by the two pairs of lines in frames t1 and t2

(as shown in Fig. 9) and transform them to the robot

frame of reference. Using this technique, the rotation

between the two frames (Fig. 8) was calculated to be

28.7◦ of yaw and 13.5◦ of pitch, which is quite close to

the groundtruth of 30◦ and 15◦ respectively. (More

results in Table 1.)

5. Conclusion

We have shown a method to extract the rotation

for an omnidirectional camera, which can take advan-

tage of features in all directions. We detect line seg-

ments (as they are more stable features) and match

them efficiently using complete great circles projected

on the spherical images. Using lines, we need a much

lesser number of features (as opposed to using points).

Hence, we can search completely over all the features

without limiting the motion patterns or search space,

thus making it stable even for complicated or large

motions (30◦,45◦, etc.). In addition, the method has

no assumptions about the environment other than the

existence of straight line segments, and is fast enough

for robot navigation (0.5s per omnidirectional image

of 500 × 250 pixels). It can be made realtime by par-

allelizing the probabilistic hough transform.)

However, this is still a work in progress and the

rotation will not be accurate because the orienta-

tion of the great circles is also slightly affected by

Table 1 Results of Rotation Estimation in 3
different scenarios of pitch and yaw.
(Groundtruth in parenthesis)

Yaw 28.7◦ (30◦) 21.6◦ (20◦) 31.8◦ (30◦)
Pitch 13.5◦ (15◦) 46.3◦ (45◦) 28.3◦ (30◦)

N1t1+N2t1

N1t1 - N2t1

N1t1X N2t1

N1t2+N2t2N1t2 - N2t2

N1t2X N2t2

α

β

γ

X

Y

Z

Fig.9 Rotation Estimation from line matches by
forming two orthogonal bases

large translations (several metres). Usually, a flying

robot undergoes rapid rotation and slower transla-

tion. Thus, this method can work well if the frame

rate is fast enough to prevent large translations (5-10

FPS). To be completely accurate, we must obtain the

rotation and translation simultaneously, perhaps by

utilizing vanishing points [1], and translation extrac-

tion as shown in [6]. We will try to extend this work

along similar lines and formulate a real-time technique

for complete, accurate motion estimation of a flying

robot.

Acknowledgements

This work was in part supported by the SIP Pro-
gram (Cross-ministerial Strategic Innovation Promotion
Program).

References

[1] J.C. Bazin, C. Demonceaux, P. Vasseur, and
I. Kweon. “Rotation estimation and vanishing point
extraction by omnidirectional vision in urban envi-
ronment”. The International Journal of Robotics Re-
search, 31(1):63–81, 2012.

[2] P. Chang and M. Herbert. “Omnidirectional visual
servoing for human-robot interaction”. Proceedings of
the 1998 IEEE/RSJ International Conference on In-
telligent Robots and Systems, 3:1801–1807 vol.3, 1998.

[3] P. Corke, D. Strelow, and S. Singh. “Omnidirectional
visual odometry for a planetary rover”. Proceedings of
the 2004 IEEE/RSJ International Conference on In-
telligent Robots and Systems, 4:4007–4012 vol.4, 2004.

[4] C. Demonceaux, P. Vasseur, and C. Pégard. “UAV
attitude computation by omnidirectional vision in ur-
ban environment”. Proceedings of the 2007 IEEE In-
ternational Conference on Robotics and Automation,
pages 2017–2022, 2007.

[5] R. Kawanishi, A. Yamashita, T. Kaneko, and
H. Asama. “Parallel line-based structure from mo-
tion by using omnidirectional camera in textureless
scene”. Advanced Robotics, 27(1):19–32, 2013.

[6] S. Ly, C. Demonceaux, and P. Vasseur. “Translation
estimation for single viewpoint cameras using lines”.
Proceedings of the 2010 IEEE International Confer-
ence on Robotics and Automation, pages 1928–1933,
2010.

[7] O. Munteanu, R. Pronk, and A. Visser. “Visual odom-
etry with the ricoh theta”. Project Report, Univer-
siteit van Amsterdam, February, 2014.

[8] A. Pagani and D. Stricker. “Structure from Motion
using full spherical panoramic cameras”. Proceedings
of the 2011 IEEE International Conference on Com-
puter Vision Workshop, pages 375–382, 2011.

[9] D. Scaramuzza, F. Fraundorfer, and R. Siegwart.
“Real-time monocular visual odometry for on-road
vehicles with 1-point RANSAC”. Proceedings of the
2009 IEEE International Conference on Robotics and
Automation, pages 4293–4299, 2009.

[10] D. Scaramuzza, A. Martinelli, and R. Siegwart. “A
Toolbox for Easily Calibrating Omnidirectional Cam-
eras”. Proceedings of the 2006 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems,
pages 5695–5701, 2006.


